Home Possible application of lead sulfide quantum dot in memory device
Article
Licensed
Unlicensed Requires Authentication

Possible application of lead sulfide quantum dot in memory device

  • Sweety Sarma EMAIL logo
Published/Copyright: August 15, 2015
Become an author with De Gruyter Brill

Abstract

Unipolar resistive switching behavior was observed in the as-fabricated Al/PVA/PbS QD/ITO device with ROFF/RON ratio of 3.15×103 with retentivity for prolonged time and repeatability of hysteresis loops. Schottky emission mechanism dominates conduction mechanism in low-resistance state and high-resistance state of the device. Unipolar resistive switching behavior observed in the device is attributed to Coulomb blockade. The observed characteristic in the device points toward possible application of PbS QDs in memory device.


Corresponding author: Sweety Sarma, Department of Physics, College of Science and Engineering Technology, University of South Africa, Johannesburg 1709, South Africa, e-mail:

Acknowledgments

The author acknowledges support received from the University of South Africa (UNISA), South Africa, to complete the work, and remains grateful to Gauhati University, Indian Institute of Technology, NEITCO, Assam, India, for providing experimental facilities.

References

[1] Kim FL, Kim TW, Dong TW, Kim Y. Appl. Phys. Lett. 2008, 92, 11906–11909.10.1063/1.2830617Search in Google Scholar

[2] Portney NG, Martinez-Morales AA, Ozkan M. ACS Nano 2008, 2, 191–196.10.1021/nn700240zSearch in Google Scholar PubMed

[3] Kolliopoulou S, Dimitrakis P, Normand P, Zhang HL, Cant N, Evans SD, Paul S, Pearson C. J. Appl. Phys. 2003, 94, 5234–5239.10.1063/1.1604962Search in Google Scholar

[4] Jung JH, Kim J, Kim TW, Song MS, Kim YH, Jin S. Appl. Phys. Lett. 2006, 89, 122110–122113.10.1063/1.2355465Search in Google Scholar

[5] Leong WL, Mathews N, Mhaisalkar S, Lam YM, Chen TP, Lee PS. J. Mater. Chem. 2009, 19, 7354–7361.10.1039/b911493aSearch in Google Scholar

[6] Kim WT, Jung JH, Kim TW, Son DI. Appl. Phys. Lett. 2010, 96, 253301–253303.10.1063/1.3453661Search in Google Scholar

[7] Kim JH, Jin JY, Jung JH, Lee IT, Kim W, Lim SK, Yoon CS, Kim YH. Appl. Phys. Lett. 2005, 86, 32904–32907.10.1063/1.1850194Search in Google Scholar

[8] Ventra MD. Electrical Transport in Nanoscale Systems. 2nd ed. Cambridge University Press, Cambridge, 2008.10.1017/CBO9780511755606Search in Google Scholar

[9] Yang Y, Ouyang J, Ma J, Tseng RJH, Chu C. Adv. Funct. Mater. 2006, 16, 1001–1014.10.1002/adfm.200500429Search in Google Scholar

[10] Szot K, Speier W, Bihlmayer G, Waser R. Nature Mater. 2007, 5, 312–320.10.1038/nmat1614Search in Google Scholar PubMed

[11] Strachan JP. Adv. Mater. 2010, 22, 3573–3577.10.1002/adma.201000186Search in Google Scholar PubMed

[12] Kannan V, Rhee JK. J. Appl. Phys. 2011, 110, 74505.10.1063/1.3644973Search in Google Scholar

[13] Huang Y, Luo Y, Shen Z, Yuan G, Zeng H. Nanoscale Res. Lett. 2014, 9, 381–385.10.1186/1556-276X-9-381Search in Google Scholar PubMed PubMed Central

[14] Wu C, Li F, Guo T, Qu B, Chen Z, Gong Q. Jpn. J. Appl. Phys. 2011, 50, 30204–30207.10.1143/JJAP.50.030204Search in Google Scholar

[15] Chiu F-C. Adv. Mater. Sci. Eng., doi: http://dx.doi.org/10.1155/2014/578168.10.1155/2014/578168Search in Google Scholar

[16] Li F, Son DI, Kim BJ, Kim TW. Appl. Phys. Lett. 2008, 93, 21913–21916.10.1063/1.2959786Search in Google Scholar

[17] Das BC, Pal AJ. Phil. Trans. R. Soc. A 2009, 367, 4181–4190.10.1098/rsta.2008.0288Search in Google Scholar PubMed

[18] Sarma S, Datta P. Nanosci. Nanotechnol. Lett. 2012, 4, 86–89.10.1166/nnl.2012.1279Search in Google Scholar

[19] Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim S-J. J. Mater. Chem. 2012, 22, 24610–24617.10.1039/c2jm35087dSearch in Google Scholar

[20] Wise FW. Acc. Chem. Res. 2000, 33, 773–780.10.1021/ar970220qSearch in Google Scholar PubMed

[21] Reddy VS, Karak S, Ray K, Dhar A. Org. Elect. 2009, 10, 138–144.10.1016/j.orgel.2008.10.014Search in Google Scholar

[22] Whan KT, Yang Y, Li F, Kwan WL. NPG Asia Mater. 2012, 4, 1–12.Search in Google Scholar

[23] Simmons JG. J. Phys. D: Appl. Phys. 1971, 4, 613–657.10.1088/0022-3727/4/5/202Search in Google Scholar

[24] Averin DV, Likharev KK. J. Low Temp. Phys. 1986, 62, 345–372.10.1007/BF00683469Search in Google Scholar

[25] Martinez DM, Martin PRJ, Agnllo-Rarda F. Nanotechnology for Microelectronics and Optoelectronics. Elsevier, Great Britain, 2006, p. 165.Search in Google Scholar

[26] Schmid G. In: Nanoparticles from Theory to Applications, Wiley-VCH, Germany, 2010, p. 34.Search in Google Scholar

Received: 2015-3-26
Accepted: 2015-6-28
Published Online: 2015-8-15
Published in Print: 2016-4-1

©2016 by De Gruyter

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0115/html
Scroll to top button