In situ formation of copper nanoparticles in a p(NIPAM-VAA-AAm) terpolymer microgel that retains the swelling behavior of microgels
Abstract
Copper nanoparticles (CuNPs) are formed inside a microgel assembly by an in situ reduction method, confirmed by changes observed in the absorption spectra of CuNPs at different pH values. The presence of CuNPs has been also confirmed by X-ray diffraction (XRD) studies. The terpolymer microgel p(N-isopropylacrylamide-vinyl acetic acid-acrylamide) (p[NIPAM-VAA-AAm]), which is reported for the first time, was synthesized by free radical emulsion polymerization of a temperature-sensitive NIPAM monomer, pH sensitive VAA monomer and a hydrophilic AAm monomer. The effect of temperature below and above the pKa of VAA and the effect of pH at 20°C in the absence and presence of CuNPs on the hydrodynamic radius of microgel was studied. Size of microgel particles is a function of temperature due to the presence of NIPAM, and a function of pH due to the presence of VAA. The presence of CuNPs has little or no effect on the size of microgels by varying pH, which allows these gels to retain their properties with added benefits of CuNPs for possible drug delivery applications.
References
[1] Sivakumaran D, Maitland D, Hoare T. Biomacromolecules 2011, 12, 4112–4120.10.1021/bm201170hSearch in Google Scholar PubMed
[2] Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Biomaterials 2014, 35, 4969–4985.10.1016/j.biomaterials.2014.03.001Search in Google Scholar PubMed
[3] Sahiner N, Godbey WT, McPherson G, John V. Colloid Polym. Sci. 2006, 284, 1121–1129.10.1007/s00396-006-1489-4Search in Google Scholar
[4] Brown AC, Stabenfeldt SE, Ahn B, Hannan RT, Dhada KS, Herman ES, Stefanelli V, Guzzetta N, Alexeev A, Lam WA, Lyon LA, Barker TH. Nat. Mater. 2014, 13, 1108–1114.10.1038/nmat4066Search in Google Scholar PubMed PubMed Central
[5] Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. Prog. Polym. Sci. 2008, 33, 448–477.10.1016/j.progpolymsci.2008.01.002Search in Google Scholar
[6] Bradley M, Garcia-Risueño BS. J. Colloid Interface Sci. 2011, 355, 321–327.10.1016/j.jcis.2010.12.027Search in Google Scholar PubMed
[7] Schmaljohann D. Adv. Drug Delivery Rev. 2006, 58, 1655–1670.10.1016/j.addr.2006.09.020Search in Google Scholar PubMed
[8] Nesrinne S, Djamel A. Arabian J. Chem. 2013, http://dx.doi.org/10.1016/j.arabjc.2013.11.027.10.1016/j.arabjc.2013.11.027Search in Google Scholar
[9] Hoare T, Pelton R. Macromolecules 2004, 37, 2544–2550.10.1021/ma035658mSearch in Google Scholar
[10] Jones CD, Lyon LA. Macromolecules 2000, 33, 8301–8306.10.1021/ma001398mSearch in Google Scholar
[11] Kuckling D, Vo CD, Wohlrab SE. Langmuir 2002, 18, 4263–4269.10.1021/la015758qSearch in Google Scholar
[12] Li X, Zuo J, Guo Y, Yuan X. Macromolecules 2004, 37, 10042–10046.10.1021/ma048658aSearch in Google Scholar
[13] Pich A, Tessier A, Boyko V, Lu Y, Adler HJP. Macromolecules 2006, 39, 7701–7707.10.1021/ma060985qSearch in Google Scholar
[14] Tan BH, Tam KC. Polymer 2007, 48, 6589–6597.10.1016/j.polymer.2007.09.004Search in Google Scholar
[15] Zhou S, Chu B. J. Phys. Chem. B 1998, 102, 1364–1371.10.1021/jp972990pSearch in Google Scholar
[16] Zhou X, Zhou Y, Nie J, Ji Z, Xu J, Zhang X, Du B. ACS Appl. Mater. Interfaces 2014, 6, 4498–4513.10.1021/am500291nSearch in Google Scholar PubMed
[17] Yang Q, Wang K, Nie J, Du B, Tang G. Biomacromolecules 2014, 15, 2285–2293.10.1021/bm5004493Search in Google Scholar PubMed
[18] Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S, Khademhosseini A. ACS Nano 2012, 6, 362–372.10.1021/nn203711sSearch in Google Scholar PubMed PubMed Central
[19] Coutinho CA, Mudhivarthi SR, Kumar A, Gupta VK. Appl. Surf. Sci. 2008, 255, 3090–3096.10.1016/j.apsusc.2008.08.093Search in Google Scholar
[20] Zhang JT, Wei G, Keller TF, Gallagher H, Stötzel C, Müller FA, Gottschaldt M, Schubert US, Jandt KD. Macromol. Mater. Eng. 2010, 295, 1049–1057.10.1002/mame.201000204Search in Google Scholar
[21] Liu YY, Liu XY, Yang JM, Lin DL, Chen X, Zha LS. Colloids Surf. A 2012, 393, 105–110.10.1016/j.colsurfa.2011.11.007Search in Google Scholar
[22] Chen T, Cao Z, Guo X, Nie J, Xu J, Fan Z, Du B. Polymer 2011, 52, 172–179.10.1016/j.polymer.2010.11.014Search in Google Scholar
[23] Cao Z, Du B, Chen T, Nie J, Xu J, Fan Z. Langmuir 2008, 24, 12771–12778.10.1021/la802087nSearch in Google Scholar PubMed
[24] Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Hellweg T. Langmuir 2009, 25, 3163–3167.10.1021/la803458jSearch in Google Scholar PubMed
[25] Bai S, Wu C, Gawlitza K, von Klitzing R, Ansorge-Schumacher MB, Wang D. Langmuir 2010, 26, 12980–12987.10.1021/la102042mSearch in Google Scholar PubMed
[26] Gorelikov I, Field LM, Kumacheva E. J. Am. Chem. Soc. 2004, 126, 15938–15939.10.1021/ja0448869Search in Google Scholar PubMed
[27] Xu S, Zhang J, Paquet C, Lin Y, Kumacheva E. Adv. Funct. Mater. 2003, 13, 468–472.10.1002/adfm.200304338Search in Google Scholar
[28] Karg M, Hellweg T. J. Mater. Chem. 2009, 19, 8714–8727.10.1039/b820292nSearch in Google Scholar
[29] Agrawal M, Pich A, Gupta S, Zafeiropoulos NE, Rubio-Retama J, Simon F, Stamm M. J. Mater. Chem. 2008, 18, 2581–2586.10.1039/b802102cSearch in Google Scholar
[30] Coutinho C, Mudhivarthi S, Kumar A, Gupta V. MRS Online Proc. Libr. 2009, 1157, doi:10.1557/PROC-1157-E06-04.10.1557/PROC-1157-E06-04Search in Google Scholar
[31] Hood M, Mari M, Muñoz-Espí R. Materials 2014, 7, 4057–4087.10.3390/ma7054057Search in Google Scholar PubMed PubMed Central
[32] Nabid MR, Bide Y, Niknezhad M. ChemCatChem. 2014, 6, 538–546.10.1002/cctc.201300984Search in Google Scholar
[33] Kolasinska M, Gutberlet T, Krastev R. Langmuir 2009, 25, 10292–10297.10.1021/la9011185Search in Google Scholar PubMed
[34] Chen D, Li J. J. Phys. Chem. C 2010, 114, 10478–10483.10.1021/jp100969aSearch in Google Scholar
[35] Jia G, Yang M, Song Y, You H, Zhang H. Cryst. Growth Des. 2009, 9, 301–307.10.1021/cg8004823Search in Google Scholar
[36] Pich A, Bhattacharya S, Lu Y, Boyko V, Adler HJP. Langmuir 2004, 20, 10706–10711.10.1021/la040084fSearch in Google Scholar PubMed
[37] Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Acta Biomater. 2008, 4, 707–716.10.1016/j.actbio.2007.11.006Search in Google Scholar PubMed
[38] Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E. Chem. Mater. 2005, 17, 5255–5262.10.1021/cm0505244Search in Google Scholar
[39] Dhas NA, Raj CP, Gedanken A. Chem. Mater. 1998, 10, 1446–1452.10.1021/cm9708269Search in Google Scholar
[40] Liu Z, Bando Y. Adv. Mater. 2003, 15, 303–305.10.1002/adma.200390073Search in Google Scholar
[41] Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Martra G. Chem. Mater. 2002, 14, 1183–1186.10.1021/cm011199xSearch in Google Scholar
[42] Ajmal M, Siddiq M, Al-Lohedan H, Sahiner N. RSC Adv. 2014, 4, 59562–59570.10.1039/C4RA11667DSearch in Google Scholar
[43] Tomatsu I, Peng K, Kros A. Adv. Drug Delivery Rev. 2011, 63, 1257–1266.10.1016/j.addr.2011.06.009Search in Google Scholar PubMed
[44] Kim MH, Kim JC, Lee HY, Kim JD, Yang JH. Colloids Surf. B 2005, 46, 57–61.10.1016/j.colsurfb.2005.09.002Search in Google Scholar PubMed
[45] Khanna PK, Gaikwad S, Adhyapak PV, Singh N, Marimuthu R. Mater. Lett. 2007, 61, 4711–4714.10.1016/j.matlet.2007.03.014Search in Google Scholar
[46] Salavati-Niasari M, Davar F, Mir N. Polyhedron 2008, 27, 3514–3518.10.1016/j.poly.2008.08.020Search in Google Scholar
[47] Contreras-Cáceres R, Sánchez-Iglesias A, Karg M, Pastoriza-Santos I, Pérez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzán LM. Adv. Mater. 2008, 20, 1666–1670.10.1002/adma.200800064Search in Google Scholar
[48] Zhang JT, Cheng SX, Zhuo RX. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2390–2392.10.1002/pola.10785Search in Google Scholar
[49] Saunders BR, Vincent B. J. Chem. Soc., Faraday Trans. 1996, 92, 3385–3389.10.1039/ft9969203385Search in Google Scholar
[50] Liz-Marzán LM, Lado-Touriño I. Langmuir 1996, 12, 3585–3589.10.1021/la951501eSearch in Google Scholar
[51] Dowding PJ, Vincent B, Williams E. J Colloid Interface Sci. 2000, 221, 268–272.10.1006/jcis.1999.6593Search in Google Scholar
[52] Öle Kiminta DM, Luckham PF, Lenon S. Polymer 1995, 36, 4827–4831.10.1016/0032-3861(95)99299-ASearch in Google Scholar
[53] Khare AR, Peppas NA. Biomaterials 1995, 16, 559–567.10.1016/0142-9612(95)91130-QSearch in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Review
- The role of poly(acrylic acid) in conventional glass polyalkenoate cements
- Original articles
- Development of a polystyrene latex-based reagent for rheumatoid factor detection
- Biodegradation study of bio-corn flour filled low density polyethylene composites assessed by natural soil
- Efficacy of PU foam materials for scientific investigation in footwear research
- Degradation of PVDF-based composite membrane and its impacts on membrane intrinsic and separation properties
- Fabrication of cellulose fine fiber based membranes embedded with silver nanoparticles via Forcespinning
- Influence of wax content on the electrical, thermal and tribological behaviour of a polyamide 6/graphite composite
- In situ formation of copper nanoparticles in a p(NIPAM-VAA-AAm) terpolymer microgel that retains the swelling behavior of microgels
- Possible application of lead sulfide quantum dot in memory device
- Solution properties of polyaniline/carbon particle composites
- Preparation and characterization of SiO2/fluoroalkyl-trialkoxysilane/2-hydroxyethyl methacrylate/trimethylolpropane triacrylate and SiO2/3-(trimethoxysilyl)propyl methacrylate/ 2-hydroxyethyl methacrylate/trimethylolpropane triacrylate coatings on glass substrates using the sol-gel method
- The performance and morphology of PMMA/SAN/ABS blends
Articles in the same Issue
- Frontmatter
- Review
- The role of poly(acrylic acid) in conventional glass polyalkenoate cements
- Original articles
- Development of a polystyrene latex-based reagent for rheumatoid factor detection
- Biodegradation study of bio-corn flour filled low density polyethylene composites assessed by natural soil
- Efficacy of PU foam materials for scientific investigation in footwear research
- Degradation of PVDF-based composite membrane and its impacts on membrane intrinsic and separation properties
- Fabrication of cellulose fine fiber based membranes embedded with silver nanoparticles via Forcespinning
- Influence of wax content on the electrical, thermal and tribological behaviour of a polyamide 6/graphite composite
- In situ formation of copper nanoparticles in a p(NIPAM-VAA-AAm) terpolymer microgel that retains the swelling behavior of microgels
- Possible application of lead sulfide quantum dot in memory device
- Solution properties of polyaniline/carbon particle composites
- Preparation and characterization of SiO2/fluoroalkyl-trialkoxysilane/2-hydroxyethyl methacrylate/trimethylolpropane triacrylate and SiO2/3-(trimethoxysilyl)propyl methacrylate/ 2-hydroxyethyl methacrylate/trimethylolpropane triacrylate coatings on glass substrates using the sol-gel method
- The performance and morphology of PMMA/SAN/ABS blends