Home Hydrogen as an energy carrier: constraints and opportunities
Article
Licensed
Unlicensed Requires Authentication

Hydrogen as an energy carrier: constraints and opportunities

  • Nicola Armaroli ORCID logo EMAIL logo , Elisa Bandini ORCID logo and Andrea Barbieri ORCID logo
Published/Copyright: January 5, 2024

Abstract

The use of molecular hydrogen (H2) in the energy sector faces several technical and economic hurdles related to its chemical and physical properties, particularly volumetric energy density and mass. The production, transport and storage of hydrogen, both in gas and liquid form, are intrinsically inefficient and expensive. Moreover, the mass production of green hydrogen would preferably use surpluses of renewable electricity that will be largely available not before the next decade. To fulfill the great potential of H2 in the decarbonization of the global economy – which should greatly accelerate – applications must be carefully selected, favoring for instance hard-to-abate sectors with respect to low-temperature residential heating or long-distance transportation versus light duty vehicles. In the meantime, research on production, transportation and storage of H2 must substantially leap forward.


Corresponding author: Nicola Armaroli, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129 Bologna, Italy, e-mail:

Funding source: European Union, Programme NextGeneration EU

Award Identifier / Grant number: PNRR M2, C2, I3.5 Research and development of tech

Award Identifier / Grant number: PNRR M4, C2, I1.3 Network 4 Energy Sustainable Tra

Award Identifier / Grant number: PNRR M4, C2, I1.4 Ecosystem for Sustainable Transi

Acknowledgments

The authors thank the European Union, Programme NextGeneration EU, for the financial support of the projects PNRR M4, C2, I1.3 Network 4 Energy Sustainable Transition (NEST), PNRR M2, C2, I3.5 Research and development of technologies for the hydrogen supply chain (POR H2), PNRR M4, C2, I1.4 Ecosystem for Sustainable Transition in Emilia-Romagna (ECOSISTER).

  1. Research ethics: This work fullfills all relevant ethical guidelines of our Institution and is fully compliant with ethics in scientific research and publishing.

  2. Author contributions: N.A.: Research planning, data collection and elaboration, text writing. E.B.: Data discussion, text elaboration and correction. A.B.: Data discussion, figures preparation, text elaboration and correction.

  3. Competing interests: All authors declare that they have no conflicts of interest.

  4. Research funding: Funding for this research is obtained from the European Union in the frame of the Next Generation EU Programme, vai the projects: (a) PNRR M4, C2, I1.3 Network 4 Energy Sustainable Transition (NEST); (b) PNRR M2, C2, I3.5 Research and development of technologies for the hydrogen supply chain (POR H2); (c) PNRR M4, C2, I1.4 Ecosystem for Sustainable Transition in Emilia-Romagna (ECOSISTER).

  5. Data availability: Further details on data presented can be asked directly to the corresponding author.

References

[1] N. Armaroli, V. Balzani. ChemSusChem 4, 21 (2011), https://doi.org/10.1002/cssc.201000182.Search in Google Scholar PubMed

[2] E. Hand. Science 379, 630 (2023), https://doi.org/10.1126/science.adh1477.Search in Google Scholar PubMed

[3] International Energy Agency, Towards hydrogen definitions based on their emissions intensity (2023), https://www.iea.org/reports/towards-hydrogen-definitions-based-on-their-emissions-intensity.Search in Google Scholar

[4] M. A. Kappes, T. Perez. Corros. Rev. 41, 319 (2023), https://doi.org/10.1515/corrrev-2022-0083.Search in Google Scholar

[5] J. M. Ogden. Annu. Rev. Energ. Env. 24, 227 (1999), https://doi.org/10.1146/annurev.energy.24.1.227.Search in Google Scholar

[6] ACER (European Union Agency for the Cooperation of Energy Regulators), Transporting pure hydrogen by repurposing existing gas infrastructure: overview of existing studies and reflections on the conditions for repurposing (2021), www.acer.europa.eu.Search in Google Scholar

[7] M. Sand, R. B. Skeie, M. Sandstad, S. Krishnan, G. Myhre, H. Bryant, R. Derwent, D. Hauglustaine, F. Paulot, M. Prather, D. Stevenson. Commun. Earth Environ. 4, 203 (2023), https://doi.org/10.1038/s43247-023-00857-8.Search in Google Scholar

[8] D. H. Barnes, S. C. Wofsy, B. P. Fehlau, E. W. Gottlieb, J. W. Elkins, G. S. Dutton, P. C. Novelli. J. Geophys. Res. Atmos. 108 (2003), https://doi.org/10.1029/2001jd001199.Search in Google Scholar

[9] US Dept. of Energy, Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs (2009), https://www.hydrogen.energy.gov/pdfs/9013_energy_requirements_for_hydrogen_gas_compression.pdf.Search in Google Scholar

[10] R. Morales-Ospino, A. Celzard, V. Fierro. Renew. Sust. Energ. Rev. 182, 113360 (2023), https://doi.org/10.1016/j.rser.2023.113360.Search in Google Scholar

[11] P. C. Rao, M. Yoon. Energies 13, 6040 (2020), https://doi.org/10.3390/en13226040.Search in Google Scholar

[12] K. E. Lamb, M. D. Dolan, D. F. Kennedy. Int. J. Hydrogen Energy 44, 3580 (2019), https://doi.org/10.1016/j.ijhydene.2018.12.024.Search in Google Scholar

[13] The Royal Society, Ammonia: zero-carbon fertiliser, fuel and energy store (2020), https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf.Search in Google Scholar

[14] S. Chatterjee, R. K. Parsapur, K. W. Huang. ACS Energy Lett. 6, 4390 (2021), https://doi.org/10.1021/acsenergylett.1c02189.Search in Google Scholar

[15] A. Tullo. Chem. Eng. News 100(32), 14 (2022).Search in Google Scholar

[16] F. Schorn, J. L. Breuer, R. C. Samsun, T. Schnorbus, B. Heuser, R. Peters, D. Stolten. Adv. Appl. Energy 3, 100050 (2021), https://doi.org/10.1016/j.adapen.2021.100050.Search in Google Scholar

[17] H21 North of England, H21 NoE report (2018), https://www.h21.green/app/uploads/2019/01/H21-NoE-PRINT-PDF-FINAL-1.pdf.Search in Google Scholar

[18] R. W. Howarth, M. Z. Jacobson. Energy Sci. Eng. 9, 1676 (2021), https://doi.org/10.1002/ese3.956.Search in Google Scholar

[19] J. Pettersen, R. Steeneveldt, D. Grainger, T. Scott, L. M. Holst, E. S. Hamborg. Energy Sci. Eng. 10, 3220 (2022), https://doi.org/10.1002/ese3.1232.Search in Google Scholar

[20] The Italian Government, Decarbonising Transport, Scientific evidence and policy proposals (2022), https://mit.gov.it/nfsmitgov/files/media/notizia/2022-06/STEMI_Decarbonising%20Transport_ENG.pdf.Search in Google Scholar

[21] Fraunhofer IEE, Hydrogen in the energy system of the future: focus on heat in buidings (2020), https://www.iee.fraunhofer.de/content/dam/iee/energiesystemtechnik/en/documents/Studies-Reports/FraunhoferIEE_Study_H2_Heat_in_Buildings_final_EN_20200619.pdf.Search in Google Scholar

[22] M. Peplow. Chem. Eng. News 99(22), 22 (2021).10.1021/cen-09922-coverSearch in Google Scholar

[23] M. Genovese, A. Schlüter, E. Scionti, F. Piraino, O. Corigliano, P. Fragiacomo. Int. J. Hydrogen Energy 48, 16545 (2023), https://doi.org/10.1016/j.ijhydene.2023.01.194.Search in Google Scholar

[24] N. Heinemann, J. Alcalde, J. M. Miocic, S. J. T. Hangx, J. Kallmeyer, C. Ostertag-Henning, A. Hassanpouryouzband, E. M. Thaysen, G. J. Strobel, C. Schmidt-Hattenberger, K. Edlmann, M. Wilkinson, M. Bentham, R. S. Haszeldine, R. Carbonell, A. Rudloff. Energy Environ. Sci. 14, 853 (2021), https://doi.org/10.1039/d0ee03536j.Search in Google Scholar

[25] P. G. Haddad, M. Ranchou-Peyruse, M. Guignard, J. Mura, F. Casteran, L. Ronjon-Magand, P. Senechal, M. P. Isaure, P. Moonen, G. Hoareau, D. Dequidt, P. Chiquet, G. Caumette, P. Cezac, A. Ranchou-Peyruse. Energy Environ. Sci. 15, 3400 (2022).10.1039/D2EE00765GSearch in Google Scholar

[26] M. Z. Jacobson, A.-K. von Krauland, K. Song, A. N. Krull. Smart Energy 11, 100106 (2023), https://doi.org/10.1016/j.segy.2023.100106.Search in Google Scholar

[27] P. Plötz. Nat. Electron. 5, 8 (2022).10.1038/s41928-021-00706-6Search in Google Scholar

[28] N. Armaroli, A. Barbieri. Nat. Italy (2021), https://doi.org/10.1038/d43978.Search in Google Scholar

Received: 2023-08-02
Accepted: 2023-12-12
Published Online: 2024-01-05
Published in Print: 2024-04-25

© 2023 IUPAC & De Gruyter

Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-0801/html
Scroll to top button