Home Mathematics On isbell’s density theorem for bitopological pointfree spaces II
Article
Licensed
Unlicensed Requires Authentication

On isbell’s density theorem for bitopological pointfree spaces II

  • M. Andrew Moshier , Imanol Mozo Carollo EMAIL logo and Joanne Walters-Wayland
Published/Copyright: June 9, 2025
Become an author with De Gruyter Brill

Abstract

With the aim of studying subspaces in pointfree bitopology, we characterize extremal epimorphism in biframes and show that a smallest dense one always exists, providing an analogue of Isbell’s Density Theorem. Further we study the functoriality of assigning to each biframe its lattice of subbilocales and its smallest dense subbilocale.


The second named author acknowledges support from the Basque Government (grant IT1483-22).


  1. (Communicated by David Buhagiar)

References

[1] Banaschewski, B.—Brümmer, G. C. L.—Hardie, K. A.: Biframes and bispaces, Quaest. Math. 6 (1983), 13–25.10.1080/16073606.1983.9632289Search in Google Scholar

[2] Banaschewski, B.—Pultr, A.: Booleanization, Cahiers Topologie Géom. Différentielle Catég. 37 (1996), 41–60.Search in Google Scholar

[3] Ferreira, M. J.—Gutiérrez García, J.—Picado, J.: Insertion of continuous real functions on spaces, bispaces, ordered spaces and pointfree spacesA common root, Appl. Categ. Struct. 19 (2011), 469–487.10.1007/s10485-009-9209-0Search in Google Scholar

[4] Isbell, J.: Atomless parts of spaces, Math. Scand. 31 (1972), 5–32.10.7146/math.scand.a-11409Search in Google Scholar

[5] Jung, A.—Moshier, M. A.: On the bitopological nature of Stone duality, Technical Report CSR-06-13, School of Computer Science, The University of Birmingham, 2006.Search in Google Scholar

[6] Moshier, M. A.—Mozo Carollo, I.—Walters-Wayland, J.: On Isbell’s density theorem for bitopological pointfree spaces I, Topology Appl. 273 (2020), Art. ID 106962.10.1016/j.topol.2019.106962Search in Google Scholar

[7] Johnstone, P. T.: Stone Spaces. Cambridge Stud. Adv. Math., Vol. 3, Cambridge University Press, 1982.Search in Google Scholar

[8] Nxumalo, M. S.: Remoteness in the Category of Locales PhD Thesis, University of South Africa, 2023.Search in Google Scholar

[9] Picado, J.—Pultr, A.: Frames and Locales: Topology without Points. Front. Math., vol. 28, Springer, Basel, 2012.10.1007/978-3-0348-0154-6Search in Google Scholar

[10] Picado, J.—Pultr, A.: (Sub)fit biframes and non-symmetric nearness, Topology Appl. 168 (2014), 66–81.10.1016/j.topol.2014.02.012Search in Google Scholar

[11] Schauarte, A: Biframes, PhD Thesis, McMaster University, 1992.Search in Google Scholar

[12] Suarez, A. L.: The Booleanization of a d-frame, Appl. Categ. Struct. 30 (2022), 485–497.10.1007/s10485-021-09663-9Search in Google Scholar

Received: 2024-10-04
Accepted: 2025-01-16
Published Online: 2025-06-09
Published in Print: 2025-06-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0036/pdf
Scroll to top button