Home Mathematics Fekete-Szegö problem for starlike functions connected with k-Fibonacci numbers
Article
Licensed
Unlicensed Requires Authentication

Fekete-Szegö problem for starlike functions connected with k-Fibonacci numbers

  • Serap Bulut EMAIL logo
Published/Copyright: August 1, 2021
Become an author with De Gruyter Brill

Abstract

In a recent paper, Sokół et al. [Applications of k-Fibonacci numbers for the starlike analytic functions, Hacet. J. Math. Stat. 44(1) (2015), 121{127] obtained an upper bound for the Fekete-Szegö functional ϕλ when λ 2 R of functions belong to the class SLk connected with k-Fibonacci numbers. The main purpose of this paper is to obtain sharp bounds for ϕλ both λ 2 R and λ 2 C.

  1. (Communicated by Stanis ława Kanas)

References

[1] Dziok, J.—Raina, R. K.—Sokół, J.: On α-convex functions related to shell-like functions connected with Fibonacci numbers Appl. Math. Comput. 218 (2011), 996-1002.10.1016/j.amc.2011.01.059Search in Google Scholar

[2] Dziok, J.—Raina, R. K.—Sokół, J.: Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers Comput. Math. Appl. 61 (2011), 2605-2613.10.1016/j.camwa.2011.03.006Search in Google Scholar

[3] Dziok, J.—Raina, R. K.—Sokół, J.: On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers Math. Comput. Modelling 57 (2013), 1203-1211.10.1016/j.mcm.2012.10.023Search in Google Scholar

[4] Falcón, S.—Plaza, A.: The k-Fibonacci sequence and the Pascal 2-triangle Chaos Solitons Fractals 33(1) (2007), 38-49.10.1016/j.chaos.2006.10.022Search in Google Scholar

[5] Fekete, M.—Szegö, G.: Eine Bemerkung über ungerade schlichte Funktionen J. Lond. Math. Soc. 8 (1933), 85-89.10.1112/jlms/s1-8.2.85Search in Google Scholar

[6] Güney, H. Ö.—Ilhan, S.—Sokół, J.: An upper bound for third Hankel determinant of starlike functions connected with k-Fibonacci numbers Bol. Soc. Mat. Mexicana (3) 25(1) (2019), 117-129.10.1007/s40590-017-0190-6Search in Google Scholar

[7] Güney, H. Ö.—Sokół, J.—Ilhan, S.: Second Hankel determinant problem for some analytic function classes with connected k-Fibonacci numbers Acta Univ. Apulensis Math. Inform. 54 (2018), 161-174.10.17114/j.aua.2018.54.11Search in Google Scholar

[8] Ma, W.—Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994, pp. 157-169.Search in Google Scholar

[9] Yilmaz Özgür, N.—Sokół, J.: On starlike functions connected with k-Fibonacci numbers Bull. Malays. Math. Sci. Soc. 38(1) (2015), 249-258.10.1007/s40840-014-0016-xSearch in Google Scholar

[10] Raina, R. K.—Sokół, J.: Fekete-Szegö problem for some starlike functions related to shell-like curves Math. Slovaca 66(1) (2016), 135-140.10.1515/ms-2015-0123Search in Google Scholar

[11] Ravichandran, V.—Gangadharan, A.—Darus, M.: Fekete-Szegö inequality for certain class of Bazilevic functions Far East J. Math. Sci. 15 (2004), 171-180.Search in Google Scholar

[12] Sokół, J.: On starlike functions connected with Fibonacci numbers Folia Scient. Univ. Tech. Resoviensis 175(23) (1999), 111-116.Search in Google Scholar

[13] Sokół, J.—Ilhan, S.—Güney, H. Ö.: An upper bound for third Hankel determinant of starlike functions related to shell-like curves connected with Fibonacci numbers J. Math. Appl. 41 (2018), 195-206.10.7862/rf.2018.14Search in Google Scholar

[14] Sokół, J.—Ilhan, S.—Güney, H. Ö.: Second Hankel determinant problem for several classes of analytic functions related to shell-like curves connected with Fibonacci numbers TWMS J. App. Eng. Math. 8(1a) (2018), 220-229.10.7862/rf.2018.14Search in Google Scholar

[15] Sokół, J.—Raina, R. K.—Yilmaz Özgür, N.: Applications of k-Fibonacci numbers for the starlike analytic functions Hacet. J. Math. Stat. 44(1) (2015), 121-127.10.15672/HJMS.2015449091Search in Google Scholar

Received: 2020-06-04
Accepted: 2020-09-08
Published Online: 2021-08-01
Published in Print: 2021-08-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0023/pdf
Scroll to top button