Home The Chinese Remainder Theorem for Strongly Semisimple MV-Algebras and Lattice-Groups
Article
Licensed
Unlicensed Requires Authentication

The Chinese Remainder Theorem for Strongly Semisimple MV-Algebras and Lattice-Groups

  • Vincenzo Marra EMAIL logo
Published/Copyright: October 15, 2015
Become an author with De Gruyter Brill

Abstract

An MV-algebra (equivalently, a lattice-ordered Abelian group with a distinguished order unit) is strongly semisimple if all of its quotients modulo finitely generated congruences are semisimple. All MV-algebras satisfy a Chinese Remainder Theorem, as was first shown by Keimel four decades ago in the context of lattice-groups. In this note we prove that the Chinese Remainder Theorem admits a considerable strengthening for strongly semisimple structures.

References

[1] BELLUCE, L. P.-DI NOLA, A.: Simplicial structures in MV-algebras and logic, J. Symbolic Logic 72 (2007), 584-600.10.2178/jsl/1185803624Search in Google Scholar

[2] BIGARD, A.-KEIMEL, K.-WOLFENSTEIN, S.: Groupes et anneaux réticulés. Lecture Notes in Math. 608, Springer-Verlag, Berlin, 1977.10.1007/BFb0067004Search in Google Scholar

[3] BUSANICHE, M.-MUNDICI, D.: Bouligand-Severi tangents in MV-algebras, Rev.Mat. Iberoam. 30 (2014), 191-201.10.4171/RMI/774Search in Google Scholar

[4] CABRER, L. M.: Bouligand-Severi k-tangents and strongly semisimple MV-algebras, J. Algebra 404 (2014), 271-283.10.1016/j.jalgebra.2014.01.014Search in Google Scholar

[5] CABRER, L. M.-MUNDICI, D.: Severi-Bouligand tangents, Frenet frames and Riesz spaces, Adv. in Appl. Math. 64 (2015), 1-20.10.1016/j.aam.2014.11.004Search in Google Scholar

[6] CIGNOLI, R. L. O.-D’OTTAVIANO, I. M. L.-MUNDICI, D.: Algebraic Foundations of Many-valued Reasoning. Trends Log. Stud. Log. Libr. 7, Kluwer Academic Publishers, Dordrecht, 2000.10.1007/978-94-015-9480-6_2Search in Google Scholar

[7] COHN, P. M.: Universal Algebra (2nd ed.). Mathematics and its Applications, Vol. 6, D. Reidel Publishing Co., Dordrecht, 1981.Search in Google Scholar

[8] CORNISH, W. H.: The Chinese remainder theorem and sheaf representations, Fund. Math. 96 (1977), 177-187.10.4064/fm-96-3-177-187Search in Google Scholar

[9] DUBUC, E. J.-POVEDA, Y. A.: The intimate relationship between the McNaughton and the Chinese Remainder Theorems for MV-algebras, Studia Logica 101 (2013), 483-485.10.1007/s11225-011-9368-5Search in Google Scholar

[10] DUBUC, E. J.-POVEDA, Y. A.: Representation theory of MV-algebras, Ann. Pure Appl. Logic 161 (2010), 1024-1046.10.1016/j.apal.2009.12.006Search in Google Scholar

[11] ERNÉ, M.-KOSLOWSKI, J.-MELTON, A.-STRECKER, G. E.: A primer on Galois connections. In: Papers on General Topology and Applications (Madison, WI, 1991). Ann. New York Acad. Sci., Vol. 704, New York Acad. Sci., New York, 1993.Search in Google Scholar

[12] FERRAIOLI, A. R.-LETTIERI, A.: Representations of MV-algebras by sheaves, MLQ Math. Log. Q. 57 (2011), 27-43.10.1002/malq.200910116Search in Google Scholar

[13] FILIPOIU, A.-GEORGESCU, G.: Compact and Pierce representations of MV-algebras, Rev. Roumaine Math. Pures Appl. 40 (1995), 599-618.Search in Google Scholar

[14] GEHRKE, M.-VAN GOOL, S.-MARRA, V.: Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality, J. Algebra 417 (2014), 290-332.10.1016/j.jalgebra.2014.06.031Search in Google Scholar

[15] GILLMAN, L.-JERISON, M.: Rings of continuous functions. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London-New York, 1960.10.1007/978-1-4615-7819-2Search in Google Scholar

[16] HAGER, A. W.-ROBERTSON, L. C.: Representing and ringifying a Riesz space. In: Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 411-431.Search in Google Scholar

[17] HOCHSTER, M.: Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60.10.1090/S0002-9947-1969-0251026-XSearch in Google Scholar

[18] HÖLDER, O.: Die Axiome der Quantität und die Lehre vom Maß, Leipz. Ber. 53 (1901), 1-64.Search in Google Scholar

[19] JOHNSTONE, P. T.: Stone Spaces. Cambridge Stud. Adv. Math. 3, Cambridge University Press, Cambridge, 1986.Search in Google Scholar

[20] KEIMEL, K.: Représentation d’anneaux réticulés dans des faisceaux, C. R. Math. Acad. Sci. Paris Sér. A-B 266 (1968), A124-A127.Search in Google Scholar

[21] KRAUSS, P. H.-CLARK, D. M.: Global subdirect products, Mem. Amer.Math. Soc. 17 (1979), ii+109.10.1090/memo/0210Search in Google Scholar

[22] MUNDICI, D.: Interpretation of AF C∗ algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63.10.1016/0022-1236(86)90015-7Search in Google Scholar

[23] RUMP, W.-YANG, Y. C.: Jaffard-Ohm correspondence and Hochster duality, Bull. Lond. Math. Soc. 40 (2008), 263-273.10.1112/blms/bdn006Search in Google Scholar

[24] RUMP, W.-YANG, Y. C.: Lateral completion and structure sheaf of an Archimedean l-group, J. Pure Appl. Algebra 213 (2009), 136-143.10.1016/j.jpaa.2008.05.013Search in Google Scholar

[25] SCHWARTZ, N.: Sheaves of abelian l-groups, Order 30 (2013), 497-526.10.1007/s11083-012-9258-0Search in Google Scholar

[26] VAGGIONE, D. J.: Sheaf representation and Chinese Remainder Theorems, Algebra Universalis 29 (1992), 232-272.10.1007/BF01190609Search in Google Scholar

[27] YANG, Y.: l-Groups and Bézout Domains. Ph.D. Thesis, Universität Stuttgart, Stuttgart, 2006.Search in Google Scholar

[28] YOSIDA, K.: On vector lattice with a unit, Proc. Imp. Acad. Tokyo 17 (1941), 121-124.Search in Google Scholar

[29] YOSIDA, K.-FUKAMIYA,M.: On vector lattice with a unit. II, Proc. Imp.Acad. Tokyo 17 (1941), 479-482. Search in Google Scholar

Received: 2013-5-25
Accepted: 2014-3-3
Published Online: 2015-10-15
Published in Print: 2015-8-1

© 2015

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0058/html
Scroll to top button