Startseite Algebraically Closed Abelian l-Groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Algebraically Closed Abelian l-Groups

  • Wolfgang Rump EMAIL logo
Veröffentlicht/Copyright: 15. Oktober 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Every semifield of non-zero characteristic is either a field of prime characteristic or a semifield of characteristic 1. Semifields of characteristic 1 are equivalent to abelian lattice-ordered groups. It is proved that such a semifield A is algebraically closed if and only if the pure equations xn = a and certain quadratic equations are solvable in A. Using a sheaf representation for z-projectable abelian l-groups on the co-Zariski space of minimal primes, a sheaf-theoretic characterization of algebraic closedness in characteristic 1 is obtained. Concerning the solvability of quadratic equations, the criterion consists in a topological condition for the base space. The results are built upon an analysis of rational functions in characteristic 1. While polynomials satisfy the “fundamental theorem of algebra”, the multiplicative structure of rational functions is determined by means of “divisors”, extracted from the additive structure of A modulo parallelogram identities.

References

[1] ANDERSON, M.-FEIL, T.: Lattice-ordered Groups, D. Reidel Publishing Co., Dordrecht, 1988.10.1007/978-94-009-2871-8Suche in Google Scholar

[2] BIGARD, A.-KEIMEL, K.-WOLFENSTEIN, S.: Groupes et anneaux réticulés. Lecture Notes in Math. 608, Springer-Verlag, Berlin-New York, 1977.10.1007/BFb0067004Suche in Google Scholar

[3] CONNES, A.-CONSANI, C.: Characteristic one, entropy and the absolute point. In: Noncommutative Geometry, Arithmetic, and Related Topics. The Twenty-First Meeting of the Japan-U.S. Mathematics Institute, Baltimore 2009, Johns Hopkins Univ. Press, Baltimore, MD, 2011, pp. 75-139.Suche in Google Scholar

[4] CUNINGHAME-GREEN, R. A.-MEIJER, P. F. J.: An algebra for piecewise-linear minimax problems, Discrete Appl. Math. 2 (1980), 267-294.10.1016/0166-218X(80)90025-6Suche in Google Scholar

[5] DI NOLA, A.-FERRAIOLI, A. R.-LENZI, G.: Algebraically closed MV-algebras and their sheaf representation, Ann. Pure Appl. Logic 164 (2013), 349-355.10.1016/j.apal.2012.10.017Suche in Google Scholar

[6] DUBUC, E. J.-POVEDA, Y. A.: Representation theory of MV-algebras, Ann. Pure Appl. Logic 161 (2010), 1024-1046.10.1016/j.apal.2009.12.006Suche in Google Scholar

[7] EINSIEDLER, M.-KAPRANOV, M.-LIND, D.: Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139-157.Suche in Google Scholar

[8] FILIPOIU, A.-GEORGESCU, G.: Compact and Pierce representations of MV-algebras, Rev. Roumaine Math. Pures Appl. 40 (1995), 599-618.Suche in Google Scholar

[9] GLASS, A. M. W.: Partially Ordered Groups. Ser. Algebra 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.10.1142/3811Suche in Google Scholar

[10] GROTHENDIECK, A.-DIEUDONNÉ, J. A.: Eléments de Géométrie Algébrique, Springer-Verlag, Berlin-Heidelberg-New York, 1971.Suche in Google Scholar

[11] KEIMEL, K.: The Representation of Lattice-ordered Groups and Rings by Sections in Sheaves. Lectures on the Applications of Sheaves to Ring Theory. Lecture Notes in Math. 248, Berlin, 1971, pp. 1-98.10.1007/BFb0058563Suche in Google Scholar

[12] KNOX, M. L.-MCGOVERN, W.WM.: Feebly projectable l-groups, Algebra Universalis 62 (2009), 91-11210.1007/s00012-010-0041-zSuche in Google Scholar

[13] KOLOKOLTSOV, V. N.-MASLOV, V. P.: Idempotent Analysis and Its Applications (Moscow, 1994. Translated by V. E. Nazaikinskii, with an appendix by Pierre Del Moral). Mathematics and Its Applications 401, Kluwer Academic Publishers Group, Dordrecht, 1997.10.1007/978-94-015-8901-7_1Suche in Google Scholar

[14] LACAVA, F.: On classes of algebraically closed Ł-algebras and abelian l-groups, Boll. Unione Mat. Ital. B (7) 1 (1987), 703-712 (Italian).Suche in Google Scholar

[15] LACAVA, F.: Quasilocal Łukasiewicz algebras, Boll. Unione Mat. Ital. B (7) 11 (1997), 961-972 (Italian).Suche in Google Scholar

[16] LITVINOV, G. L.: The Maslov dequantization, idempotent and tropical mathematics: a very brief introduction. In: Idempotent Mathematics and Mathematical Physics. Contemp. Math. 377, Amer. Math. Soc., Providence, RI, 2005, pp. 1-17.Suche in Google Scholar

[17] MCGOVERN, W. WM.: Neat rings, J. Pure Appl. Algebra 205 (2006), 243-265.10.1016/j.jpaa.2005.07.012Suche in Google Scholar

[18] MIKHALKIN, G.: Tropical geometry and its applications. In: International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 827-852.10.4171/022-2/40Suche in Google Scholar

[19] MILNE, J. S.: Algebraic Number Theory, Course Notes (revised version), 2012. http://www.jmilne.org/math/CourseNotes/ANT.pdf.Suche in Google Scholar

[20] MUNDICI, D.: Interpretation of AFC∗ algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63.10.1016/0022-1236(86)90015-7Suche in Google Scholar

[21] RUMP, W.: Abelian l-groups and a characterization of the maximal spectrum of a Prüfer domain, J. Pure Appl. Algebra 218 (2014), 2204-2017.10.1016/j.jpaa.2014.03.011Suche in Google Scholar

[22] RUMP, W.-YANG, Y. C.: Jaffard-Ohm correspondence and Hochster duality, Bull. Lond. Math. Soc. 40 (2008), 263-273.10.1112/blms/bdn006Suche in Google Scholar

[23] SPEYER, D.-STURMFELS, B.: Tropical mathematics, 2004. arXiv:math/0408099v1.Suche in Google Scholar

[24] STURMFELS, B.: A combinatorial introduction to tropical geometry, Berlin, 2007, http://math.berkeley.edu/∼bernd/tropical/sec1.pdfSuche in Google Scholar

[25] WEINERT, J. J.-WIEGANDT, R.: On the structure of semifields and lattice-ordered groups, Period. Math. Hungar. 32 (1996), 129-147. 10.1007/BF01879738Suche in Google Scholar

Received: 2013-2-19
Accepted: 2013-10-14
Published Online: 2015-10-15
Published in Print: 2015-8-1

© 2015

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0059/html
Button zum nach oben scrollen