Startseite ℍ-Perfect Pseudo MV-Algebras and Their Representations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

ℍ-Perfect Pseudo MV-Algebras and Their Representations

  • Anatolij Dvurečenskij EMAIL logo
Veröffentlicht/Copyright: 15. Oktober 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study ℍ-perfect pseudo MV-algebras, that is, algebras which can be split into a system of ordered slices indexed by the elements of an subgroup ℍ of the group of the real numbers. We show when they can be represented as a lexicographic product of ℍ with some ℓ-group. In addition, we show also a categorical equivalence of this category with the category of ℓ-groups.

References

[Dvu6] DVUREČENSKIJ, A.: Cyclic elements and subalgebras of GMV-algebras, Soft Comput. 14 (2010), 257-264, DOI: 10.1007/s00500-009-0400-x. 10.1007/s00500-009-0400-xSuche in Google Scholar

[DvHo] DVUREČENSKIJ, A.-HOLLAND,W. C.: Top varieties of generalized MV-algebras and unital lattice-ordered groups, Comm. Algebra 35 (2007), 3370-3390. 10.1080/00927870701410769Suche in Google Scholar

[DvKo] DVUREČENSKIJ, A.-KOLAŘÍK, M.: Lexicographic product vs Q-perfect and H-perfect pseudo effect algebras (Submitted). http://arxiv.org/abs/1303.0807. Suche in Google Scholar

[DvPu] DVUREČENSKIJ, A.-PULMANNOVÁ, S.: New Trends in Quantum Structures, Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000. 10.1007/978-94-017-2422-7Suche in Google Scholar

[DvVe1] DVUREČENSKIJ, A.-VETTERLEIN, T.: Pseudoeffect algebras. I. Basic properties, Internat. J. Theoret. Phys. 40 (2001), 685-701. 10.1023/A:1004192715509Suche in Google Scholar

[DvVe2] DVUREČENSKIJ, A.-VETTERLEIN, T.: Pseudoeffect algebras. II. Group representation, Internat. J. Theoret. Phys. 40 (2001), 703-726. 10.1023/A:1004144832348Suche in Google Scholar

[DXY] DVUREČENSKIJ, A.-XIE, Y.-YANG, A.: Discrete (n + 1)-valued states and n-perfect pseudo-effect algebras, Soft Comput., DOI: 10.1007/s00500-013-1001-2. 10.1007/s00500-013-1001-2Suche in Google Scholar

[FoBe] FOULIS, D. J.-BENNETT, M. K.: Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331-1352. 10.1007/BF02283036Suche in Google Scholar

[Fuc] FUCHS, L.: Partially Ordered Algebraic Systems, Pergamon Press, Oxford-New York, 1963. Suche in Google Scholar

[GeIo] GEORGESCU, G.-IORGULESCU, A.: Pseudo-MV algebras, Mult. Valued Logic 6 (2001), 95-135. Suche in Google Scholar

[Gla] GLASS, A. M. W.: Partially Ordered Groups, World Scientific, Singapore, 1999. 10.1142/3811Suche in Google Scholar

[Go] GOODEARL, K. R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveys Monogr. 20, Amer. Math. Soc., Providence, RI, 1986. Suche in Google Scholar

[Leu] LEUȘTEAN, I.: Local pseudo MV-algebras, Soft Comput. 5 (2001), 386-395. 10.1007/s005000100141Suche in Google Scholar

[MaL] MAC LANE, S: Categories for the Working Mathematician, Springer-Verlag, New York-Heidelberg-Berlin, 1971. 10.1007/978-1-4612-9839-7Suche in Google Scholar

[Mun] MUNDICI, D.: Interpretation of AF C∗-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63. 10.1016/0022-1236(86)90015-7Suche in Google Scholar

[Rac] RACHŮNEK, J.: A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273. 10.1023/A:1021766309509Suche in Google Scholar

[Rav] RAVINDRAN, K.: On a structure theory of effect algebras. PhD Thesis, Kansas State Univ., Manhattan, Kansas, 1996. Suche in Google Scholar

Received: 2013-4-26
Accepted: 2013-10-3
Published Online: 2015-10-15
Published in Print: 2015-8-1

© 2015

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0054/html
Button zum nach oben scrollen