Startseite Possibilistic and Probabilistic Logic under Coherence: Default Reasoning and System P
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Possibilistic and Probabilistic Logic under Coherence: Default Reasoning and System P

  • Giulianella Coletti EMAIL logo , Romano Scozzafava und Barbara Vantaggi
Veröffentlicht/Copyright: 15. Oktober 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Some results on coherence in probabilistic and in possibilistic frameworks are presented in order to deal with nonmonotonic reasoning. Moreover, we extend these results to conditional decomposable measures. We deal with entailment and prove that it satisfies the axiomatization of System P by referring to conditional necessities or to specific conditional decomposable measures (which include conditional probability). Finally, we study some aspects concerning a notion of irrelevance.

References

[1] BAIOLETTI, M.-CAPOTORTI, A.-TULIPANI, S.: An empirical complexity study for a 2CPA solver. In: Modern Information Processing: From Theory to Applications (B. Bouchon-Menier, G. Coletti, R. R. Yager, eds.), 2006, pp. 73-84.Suche in Google Scholar

[2] BAIOLETTI, M.-CAPOTORTI, A.-TULIPANI, S.-VANTAGGI, B.: Elimination of Boolean variables for probabilistic coherence, Soft Comput. 4 (2000), 81-88.10.1007/s005000000040Suche in Google Scholar

[3] BAIOLETTI, M.-CAPOTORTI, A.-TULIPANI, S.-VANTAGGI, B.: Simplification rules for the coherent probability assessment problem, Ann. Math. Artif. Intell. 35 (2002), 11-28.10.1023/A:1014585822798Suche in Google Scholar

[4] BAIOLETTI, M.-COLETTI, G.-PETTURITI, D.-VANTAGGI, B.: Inferential models and relevant algorithms in a possibilistic framework, Internat. J. Approx. Reason. 52 (2011), 580-598.10.1016/j.ijar.2010.12.006Suche in Google Scholar

[5] BAIOLETTI, M.-PETTURITI, D.: Algorithms for possibility assessments: coherence and extension. Fuzzy Sets and Systems 169 (2011), 1-25.Suche in Google Scholar

[6] BENFERHAT, S.-BONNEFON, J.-DA SILVA NEVES, R.: An overview of possibilistic handling of default reasoning: an experimental study, Synthese 146 (2005), 53-70.10.1007/s11229-005-9069-6Suche in Google Scholar

[7] BENFERHAT, S.-DUBOIS, D.-PRADE, H.: Nonmonotonic reasoning, conditonal objects and possibility theory, Artificial Intelligence J. 92 (1997), 259-276.10.1016/S0004-3702(97)00012-XSuche in Google Scholar

[8] BENFERHAT, S.-DUBOIS, D.-LAGRUE, S.-PRADE, H.: A big-stepped probability approach for discovering default rules, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 11 (2003), 1-14.10.1142/S0218488503002235Suche in Google Scholar

[9] BENFERHAT, S.-DUBOIS, D.-PRADE, H.: Representing Default Rules in Possibilistic Logic. In: Proc. of the 3rd Inter. Conf. on Principles of Knowledge Representation and Reasoning, (KR’92), 1992, 673-684.Suche in Google Scholar

[10] BENFERHAT, S.-DUBOIS, D.-PRADE, H.: Beyond counter-examples to nonmonotonic formalisms: A possibility-theoretic analysis. In: Proceedings ECAI, 1996, 652-656.Suche in Google Scholar

[11] BENFERHAT, S.-DUBOIS, D.-PRADE, H.: The Possibilistic Handling of Irrelevance in exception-Tolerant Reasoning, Ann. Math. Artif. Intell. 35 (2002), 29-61.10.1023/A:1014537925523Suche in Google Scholar

[12] BENFERHAT, S.-LAGRUE, S.-PAPINI, O.: Reasoning with partially ordered information in a possibilistic framework, Fuzzy Sets and Systems 144 (2004), 25-41.10.1016/j.fss.2003.10.012Suche in Google Scholar

[13] BENFERHAT, S.-SMETS, P.-SAFFIOTTI, A.: Belief functions and default reasoning, Artificial Intelligence J. 122 (2000), 1-69.10.1016/S0004-3702(00)00041-2Suche in Google Scholar

[14] BENFERHAT, S.-TABIA, K.-SEDKI, K.: Jeffrey’s rule of conditioning in a possibilistic framework, Ann. Math. Artif. Intell. 66 (2011), 185-202.10.1007/s10472-011-9262-xSuche in Google Scholar

[15] BIAZZO, V.-GILIO, A.-LUKASIEWICZ, T.-SANFILIPPO, G.: Probabilistic logic under coherence: complexity and algorithms. Ann. Math. Artif. Intell. 45 (2005), 35-81.Suche in Google Scholar

[16] BOOLE, G. An Investigation of the Laws of Thought, Walton and Maberley, London, 1854 (Reprint: Dover, New York, 1958).Suche in Google Scholar

[17] BOUCHON-MEUNIER, B.-COLETTI, G.-MARSALA, C. Independence and possibilistic conditioning, Ann. Math. Artif. Intell. 35 (2002), 107-123.10.1023/A:1014579015954Suche in Google Scholar

[18] CAPOTORTI, G.-VANTAGGI, B.: Locally strong coherence in inferential processes, Ann. Math. Artif. Intell. 35 (2002), 125-149.10.1023/A:1014531116863Suche in Google Scholar

[19] COLETTI, G.: Coherent numerical and ordinal probabilistic assessments, IEEE Trans. Syst. Manag. and Cybernet. 24 (1994), 1747-1754.10.1109/21.328932Suche in Google Scholar

[20] COLETTI, G.-GILIO, A.-SCOZZAFAVA, R.: Conditional events with vague information in expert systems. In: Lecture Notes in Comput. Sci. 521 (B. Bouchon-Meunier, R. R. Yager, L. A. Zadeh, eds.) Springer, Heidelberg, 1991, pp. 106-114.Suche in Google Scholar

[21] COLETTI, G.-PETTURITI, D.-VANTAGGI, B.: Possibilistic and probabilistic likelihood functions and their extensions: Common features and specific characteristics, Fuzzy Sets and Systems 250 (2014), 25-51.10.1016/j.fss.2013.09.010Suche in Google Scholar

[22] COLETTI, G.-SCOZZAFAVA, R.: From conditional events to conditional measures: a new axiomatic approach, Ann. Math. Artif. Intell. 32 (2001), 373-392.10.1023/A:1016786121626Suche in Google Scholar

[23] COLETTI, G.-SCOZZAFAVA, R.: Probabilistic Logic in a Coherent Setting. Trends in Logic, Vol. 15, Kluwer Academic Publishers, Dordrecht-Boston-London, 2002.Suche in Google Scholar

[24] COLETTI, G.-SCOZZAFAVA, R.-VANTAGGI, B.: Probabilistic reasoning as a general unifying tool. In: Lecture Notes in Artificial Intelligence 2143 (S. Benferhat, P. Besnard, eds.), Springer, Berlin, 2001, pp. 120-131.Suche in Google Scholar

[25] COLETTI, G.-SCOZZAFAVA, R.-VANTAGGI, B.: Coherent conditional probability as a tool for default reasoning. In: Intelligent Systems for Information Processing: from Representation to Applications (B. Bouchon Meunier, L. Foulloy, R. R. Yager, eds.) 2003, pp. 191-202.10.1016/B978-044451379-3/50015-7Suche in Google Scholar

[26] COLETTI, G.-SCOZZAFAVA, R.-VANTAGGI, B.: Weak Implication in Terms of Conditional Uncertainty Measures. Lecture Notes in Artificial Intelligence 2143, Springer, Berlin, 2007, pp. 139-150.10.1007/978-3-540-75256-1_15Suche in Google Scholar

[27] COLETTI, G.-VANTAGGI, B.: Representability of ordinal relations on a set of conditional events, Theory and Decision 60 (2006), 137-174.10.1007/s11238-005-4570-4Suche in Google Scholar

[28] COLETTI, G.-SCOZZAFAVA, R.-VANTAGGI, B.: Inferential processes leading to possibility and necessity, Information Sci. 245 (2013), 132-145.10.1016/j.ins.2012.10.034Suche in Google Scholar

[29] COLETTI, G.-VANTAGGI, B.: Possibility theory: conditional independence, Fuzzy Sets and Systems 157 (2006), 1491-1513.10.1016/j.fss.2006.01.003Suche in Google Scholar

[30] COLETTI, G.-VANTAGGI, B.: T-conditional possibilities: coherence and inference, Fuzzy Sets and Systems 160 (2009), 306-324.10.1016/j.fss.2008.04.006Suche in Google Scholar

[31] DE COOMAN, G.: Possibility theory II: Conditional possibility, Int. J. Gen. Syst. 25 (1997), 325-351.10.1080/03081079708945161Suche in Google Scholar

[32] DE FINETTI, B.: Teoria della probabilit´a vol. I, II, Einaudi, Torino, 1970 [Engl. Transl.: Theory of probability, Wiley & Sons, London 1974].Suche in Google Scholar

[33] DEMPSTER, A. P.: Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Statist. 38 (1967), 325-339.10.1214/aoms/1177698950Suche in Google Scholar

[34] DI NOLA, A.-SCOZZAFAVA, R.: Partial algebraic conditional spaces, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 12 (2004), 781-790.10.1142/S021848850400320XSuche in Google Scholar

[35] DUBINS, L. E.: Finitely additive conditional probabilities, conglomerability and disintegration, Ann. Probab. 3 (1975), 89-99.Suche in Google Scholar

[36] DUBOIS, D.: Fuzzy measures on finite scales as families of possibility measures. In: Proc. EUSFLAT 2011, pp. 822-829.10.2991/eusflat.2011.148Suche in Google Scholar

[37] DUBOIS, D.-FARGIER, H.-PRADE, H.: Ordinal and probabilistic representations of acceptance, J. Artificial Intelligence Res. 22 (2004), 23-56.10.1613/jair.1265Suche in Google Scholar

[38] DUBOIS, D.-PRADE, H.: Upper and lower possibilities induced by a multivalued mapping. In: Proc. IFAC Symp. on Fuzzy Infor., Knowledge Representation and Decision Analysis, Marseille, 1983, pp. 147-152.Suche in Google Scholar

[39] DUBOIS, D.-PRADE, H.: Fuzzy sets and statistical data, European J. Oper. Res. 25 (1986), 345-356.10.1016/0377-2217(86)90266-3Suche in Google Scholar

[40] DUBOIS, D.-PRADE, H.: When upper probabilities are possibility measures, Fuzzy Sets and Systems 49 (1992), 65-74.10.1016/0165-0114(92)90110-PSuche in Google Scholar

[41] DUBOIS, D.-PRADE, H.: Qualitative possibility theory and its probabilistic connections. In: Soft Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski et al., eds), Physica Verlag, Heidelberg, 2002.Suche in Google Scholar

[42] FERRACUTI, L.-VANTAGGI, B.: Independence and conditional possibility for strictly monotone triangular norms, Int. J. Intell. Syst. 21 (2006), 299-323.10.1002/int.20136Suche in Google Scholar

[43] FLAMINIO, T.-MONTAGNA, F.: A logical and algebraic treatment of conditional probability, Arch. Math. Logic 44 (2005), 245-262.10.1007/s00153-004-0253-zSuche in Google Scholar

[44] GEORGAKOPOULOS, G.-KAVVADIAS, D.-PAPADIMITRIOU, C. H.: Probabilistic satisfiability. J. Complexity 4 (1988), 1-11.Suche in Google Scholar

[45] GILIO, A.: Probabilistic Reasoning Under Coherence in System P. Ann. Math. Artif. Intell. 34 (2002), 5-34.Suche in Google Scholar

[46] GILIO, A.: Probabilistic logic under coherence, conditional interpretations, and default reasoning, Synthese 146 (2005), 139-152.10.1007/s11229-005-9080-ySuche in Google Scholar

[47] GILIO, A.: Generalizing inference rules in a coherence-based probabilistic default reasoning, Internat. J. Approx. Reason. 53 (2012), 413-434.10.1016/j.ijar.2011.08.004Suche in Google Scholar

[48] GILIO, A.-OVER, D.: The psychology of inferring conditionals from disjunctions: A probabilistic study, J. Math. Psych. 56 (2012), 118-131.10.1016/j.jmp.2012.02.006Suche in Google Scholar

[49] GILIO, A.-SANFILIPPO, G.: Quasi Conjunction and Inclusion Relation in Probabilistic Default Reasoning. In: Lecture Notes in Artificial Intelligence 6717 Springer, Berlin, 2011, pp. 497-508.Suche in Google Scholar

[50] GILIO, A.-SANFILIPPO, G.: Probabilistic entailment in the setting of coherence: The role of quasi conjunction and inclusion relation, Internat. J. Approx. Reason. 54 (2013), 513-525.10.1016/j.ijar.2012.11.001Suche in Google Scholar

[51] GILIO, A.-SANFILIPPO, G.: Quasi conjunction, quasi disjunction, t-norms and t-conorms: Probabilistic aspects, Inform. Sci. 245 (2013), 146-167.10.1016/j.ins.2013.03.019Suche in Google Scholar

[52] GODO, L.-MARCHIONI, E.: Reasoning about coherent conditional probability in a fuzzy logic setting, Log. J. IGPL 14 (2006), 457-481.10.1093/jigpal/jzl019Suche in Google Scholar

[53] HAJEK, P.: Metamathematics of Fuzzy Logic, Kluwer Academic Publisher, Dordrecht, 1998.10.1007/978-94-011-5300-3Suche in Google Scholar

[54] HAJEK, P.-GODO, L.-ESTEVA, F.: Fuzzy logic and probability. In: Proceedings of UAI’95, 1995, pp. 237-244.Suche in Google Scholar

[55] HANSEN, P.-JAUMARD, M.-POGGI DE ARAGESAO, B: Booleans conditions of possible experience and reasoning under uncertainty, Discrete Appl. Math. 60 (1995), 181-193.10.1016/0166-218X(94)00050-NSuche in Google Scholar

[56] KÜHR, J.-MUNDICI, D.: De Finetti theorem and Borel states in [0, 1]-valued algebraic logic, Internat. J. Approx. Reason. 46 (2007), 605-616.10.1016/j.ijar.2007.02.005Suche in Google Scholar

[57] LEHMANN, D.-MAGIDOR, M.: What does a conditional knowledge base entail? Artificial Intelligence 55 (1002), 1-60.Suche in Google Scholar

[58] MARCHIONI, E.: Possibilistic conditioning framed in fuzzy logics. Internat. J. Approx. Reason. 43 (2006), 133-165.Suche in Google Scholar

[59] MIRANDA, E.-DE COOMAN, G.-COUSO, I.: Lower previsions induced by multivalued mappings, J. Statist. Plann. Inference 133 (2005), 173-197.10.1016/j.jspi.2004.03.005Suche in Google Scholar

[60] MUNDICI, D.: Łukasiewicz logic and De Finetti coherence criterion: recent developments, Stud. Logic, Chinese Assoc. of Logic 1 (2008), 1-16.Suche in Google Scholar

[61] MUNDICI, D.: Interpretation of de Finetti coherence criterion in Łukasiewicz logic, Ann. Pure Appl. Logic 161 (2009), 235-245.10.1016/j.apal.2009.05.010Suche in Google Scholar

[62] PRADE, H.-RICO, A.: Possibilistic evidence. In: Proc. ECSQARU 2011. Lecture Notes in Comput. Sci. 6717, Springer, Heidelberg, 2011, pp. 713-724.Suche in Google Scholar

[63] REITER, R.: A logic for default reasoning, Artificial Intelligence 13 (1980), 81-132.10.1016/0004-3702(80)90014-4Suche in Google Scholar

[64] RUSSEL, S. J.-NORVIG, R.: Artificial Intelligence. A Modern Approach, Prentice-Hall, Englewood Cliffs, NJ, 1995.Suche in Google Scholar

[65] VANTAGGI, B.: Conditional independence in a finite coherent setting, Ann. Math. Artif. Intell. 32 (2001), 287-314.10.1023/A:1016730003879Suche in Google Scholar

[66] VANTAGGI, B.: Incomplete preferences on conditional random quantities: representability by conditional previsions, Math. Social Sci. 60 (2010), 104-112.10.1016/j.mathsocsci.2010.06.002Suche in Google Scholar

[67] WALLEY, P. Statistical reasoning with imprecise probabilities. Chapman and Hall, London, 1991. 10.1007/978-1-4899-3472-7Suche in Google Scholar

Received: 2013-5-16
Accepted: 2014-5-23
Published Online: 2015-10-15
Published in Print: 2015-8-1

© 2015

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0060/html
Button zum nach oben scrollen