Home Construction of complex potentials for multiply connected domain
Article
Licensed
Unlicensed Requires Authentication

Construction of complex potentials for multiply connected domain

  • Pyotr N. Ivanshin ORCID logo EMAIL logo
Published/Copyright: December 15, 2020

Abstract

The method of reduction of a Fredholm integral equation to the linear system is generalized to construction of a complex potential โ€“ an analytic function in an unbounded multiply connected domain with a simple pole at infinity which maps the domain onto a plane with horizontal slits. We consider a locally sourceless, locally irrotational flow on an arbitrary given ๐‘›-connected unbounded domain with impermeable boundary. The complex potential has the form of a Cauchy integral with one linear and ๐‘› logarithmic summands. The method is easily computable.

MSC 2010: 30C30; 30C20

References

[1] D. F. Abzalilov and E. A. Shirokova, The approximate conformal mapping onto simply and doubly connected domains, Complex Var. Elliptic Equ. 62 (2017), no. 4, 554โ€“565. 10.1080/17476933.2016.1227978Search in Google Scholar

[2] N. I. Achieser, Theory of Approximation, Frederick Ungar, New York, 1956. Search in Google Scholar

[3] U. Bรถttger, B. Plรผmper and R. Rupp, Complex potentials, J. Math. Anal. Appl. 234 (1999), no. 1, 55โ€“66. 10.1006/jmaa.1999.6317Search in Google Scholar

[4] D. Crowdy and J. Marshall, Conformal mappings between canonical multiply connected domains, Comput. Methods Funct. Theory 6 (2006), no. 1, 59โ€“76. 10.1007/BF03321118Search in Google Scholar

[5] T. K. DeLillo, On some relations among numerical conformal mapping methods, J. Comput. Appl. Math. 19 (1987), no. 3, 363โ€“377. 10.1016/0377-0427(87)90205-6Search in Google Scholar

[6] T. K. DeLillo, The accuracy of numerical conformal mapping methods: a survey of examples and results, SIAM J. Numer. Anal. 31 (1994), no. 3, 788โ€“812. 10.1137/0731043Search in Google Scholar

[7] F. D. Gakhov, Boundary Value Problems, Pergamon Press, Oxford, 1966. 10.1016/B978-0-08-010067-8.50007-4Search in Google Scholar

[8] P. N. Ivanshin and E. A. Shirokova, Approximate conformal mappings and elasticity theory, J. Complex Anal. 2016 (2016), Article ID 4367205. 10.1155/2016/4367205Search in Google Scholar

[9] L. A. Lyusternik and V. I. Sobolev, The Elements of Functional Analysis, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1951. Search in Google Scholar

[10] A. H. M. Murid and L.-N. Hu, Numerical conformal mapping of bounded multiply connected regions by an integral equation method, Int. J. Contemp. Math. Sci. 4 (2009), no. 21โ€“24, 1121โ€“1147. Search in Google Scholar

[11] M. M. S. Nasser, A. H. M. Murid and A. W. K. Sangawi, Numerical conformal mapping via a boundary integral equation with the adjoint generalized Neumann kernel, TWMS J. Pure Appl. Math. 5 (2014), no. 1, 96โ€“117. Search in Google Scholar

[12] A. W. K. Sangawi, A. H. M. Murid and M. M. S. Nasser, Annulus with circular slit map of bounded multiply connected regions via integral equation method, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 945โ€“959. Search in Google Scholar

[13] R. Schinzinger and P. A. A. Laura, Conformal Mapping, Dover, Mineola, 2003. Search in Google Scholar

[14] E. A. Shirokova, On the approximate conformal mapping of the unit disk on a simply connected domain, Russian Math. (Iz. VUZ) 58 (2014), no. 3, 47โ€“56. 10.3103/S1066369X14030050Search in Google Scholar

[15] R. Wegmann, Fast conformal mapping of multiply connected regions, J. Comput. Appl. Math. 130 (2001), no. 1โ€“2, 119โ€“138. 10.1016/S0377-0427(99)00387-8Search in Google Scholar

[16] R. Wegmann, Methods for numerical conformal mapping, Handbook of Complex Analysis: Geometric Function Theory. Vol. 2, Elsevier Science, Amsterdam (2005), 351โ€“477. 10.1016/S1874-5709(05)80013-7Search in Google Scholar

[17] R. Wegmann and M. M. S. Nasser, The Riemannโ€“Hilbert problem and the generalized Neumann kernel on multiply connected regions, J. Comput. Appl. Math. 214 (2008), no. 1, 36โ€“57. 10.1016/j.cam.2007.01.021Search in Google Scholar

[18] A. A. M. Yunus, A. H. M. Murid and M. M. S. Nasser, Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014), no. 2162, Article ID 20130514. 10.1098/rspa.2013.0514Search in Google Scholar PubMed PubMed Central

[19] A. A. M. Yunus, A. H. M. Murid and M. M. S. Nasser, Numerical evaluation of conformal mapping and its inverse for unbounded multiply connected regions, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), no. 1, 1โ€“24. Search in Google Scholar

Received: 2019-05-08
Accepted: 2020-08-03
Published Online: 2020-12-15
Published in Print: 2021-12-01

ยฉ 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2020-2039/html
Scroll to top button