Home M-projective curvature tensor on an (LCS)2n+1-manifold
Article
Licensed
Unlicensed Requires Authentication

M-projective curvature tensor on an (LCS)2n+1-manifold

  • B. Shanmukha and V. Venkatesha EMAIL logo
Published/Copyright: April 30, 2021

Abstract

In this paper, we study M-projective curvature tensors on an ( LCS ) 2 n + 1 -manifold. Here we study M-projectively Ricci symmetric and M-projectively flat admitting spacetime.

MSC 2010: 53C15; 53C25; 53C50

References

[1] S. K. Chaubey, Some properties of LP-Sasakian manifolds equipped with m-projective curvature tensor, Bull. Math. Anal. Appl. 3 (2011), no. 4, 50–58. Search in Google Scholar

[2] S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst. 12 (2010), 52–60. Search in Google Scholar

[3] G. F. R. Ellis, Relativistic cosmology, Gen. Relativity Gravit. 41 (2009), no. 3, 581–660. 10.1017/CBO9781139014403Search in Google Scholar

[4] H. Karcher, Infinitesimal characterization of Friedman universes, Arch. Math. (Basel) 38 (1982), no. 1, 58–64. 10.1007/BF01304758Search in Google Scholar

[5] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151–156. Search in Google Scholar

[6] R. Ojha, A note on the M-projective curvature tensor, Indian J. Pure Appl. Math. 8 (1977), no. 12, 1531–1534. Search in Google Scholar

[7] B. O’Neill, Semi-Riemannian Geometry. With Applications to Relativity, Pure Appl. Math. 103, Academic Press, New York, 1983. Search in Google Scholar

[8] G. P. Pokhariyal and R. S. Mishra, Curvature tensors’ and their relativistics significance, Yokohama Math. J. 18 (1970), 105–108. Search in Google Scholar

[9] D. G. Prakasha, F. O. Zengin and V. Chavan, On -projectively semisymmetric Lorentzian α-Sasakian manifolds, Afr. Mat. 28 (2017), no. 5–6, 899–908. 10.1007/s13370-017-0493-9Search in Google Scholar

[10] A. A. Shaikh, Lorentzian almost paracontact manifolds with a structure of concircular type, Kyungpook Math. J. 43 (2003), 305–314. Search in Google Scholar

[11] Venkatesha and B. Sumangala, On M-projective curvature tensor of a generalized Sasakian space form, Acta Math. Univ. Comenian. (N. S.) 82 (2013), no. 2, 209–217. Search in Google Scholar

[12] K. Yano, Concircular geometry. I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200. 10.3792/pia/1195579139Search in Google Scholar

[13] F. Ö. Zengin, On M-projectively flat LP-Sasakian manifolds, Ukrainian Math. J. 65 (2014), no. 11, 1725–1732. 10.1007/s11253-014-0895-xSearch in Google Scholar

Received: 2019-03-22
Revised: 2020-12-27
Accepted: 2020-12-29
Published Online: 2021-04-30
Published in Print: 2021-12-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2021-2054/html
Scroll to top button