Home Robust synchronization of chaotic fractional-order systems with shifted Chebyshev spectral collocation method
Article
Licensed
Unlicensed Requires Authentication

Robust synchronization of chaotic fractional-order systems with shifted Chebyshev spectral collocation method

  • Kolade M. Owolabi ORCID logo EMAIL logo
Published/Copyright: May 14, 2021

Abstract

In this work, synchronization of fractional dynamics of chaotic system is presented. The suggested dynamics is governed by a system of fractional differential equations, where the fractional derivative operator is modeled by the novel Caputo operator. The nature of fractional dynamical system is non-local which often rules out a closed-form solution. As a result, an efficient numerical method based on shifted Chebychev spectral collocation method is proposed. The error and convergence analysis of this scheme is also given. Numerical results are given for different values of fractional order and other parameters when applied to solve chaotic system, to address any points or queries that may occur naturally.

Acknowledgements

The author is grateful to the editor and anonymous reviewers for their valuable suggestions.

References

[1] S. K. Agrawal, M. Srivastava and S. Das, Synchronization of fractional order chaotic systems using active control method, Chaos Solitons Fractals 45 (2012), 737–752. 10.1016/j.chaos.2012.02.004Search in Google Scholar

[2] W. M. Ahmad and W. M. Harb, On nonlinear control design for autonomous chaotic systems of integer and fractional orders, Chaos Solitons Fractals 18 (2003), 693–701. 10.1016/S0960-0779(02)00644-6Search in Google Scholar

[3] W. M. Ahmad and J. C. Sprott, Chaos in fractional-order autonomous nonlinear systems, Chaos Solitons Fractals 16 (2003), 339–351. 10.1016/S0960-0779(02)00438-1Search in Google Scholar

[4] K. T. Alligood, T. D. Sauer and J. A. Yorke, Chaos: An Introduction to Dynamical Systems, Springer, New York, 2008. Search in Google Scholar

[5] A. Atangana, A novel model for the lassa hemorrhagic fever: Deathly disease for pregnant women, Neural. Comput. Appl. 26 (2015), 1895–1903. 10.1007/s00521-015-1860-9Search in Google Scholar

[6] A. T. Azar and S. Vaidyanathan, Advances in Chaos Theory and Intelligent Control, Springer, Cham, 2016. 10.1007/978-3-319-30340-6Search in Google Scholar

[7] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Ser. Complex. Nonlinearity Chaos 3, World Scientific, Hackensack, 2012. 10.1142/8180Search in Google Scholar

[8] B. Blasius, A. Huppert and L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems, Nature 399 (1999), 354–359. 10.1038/20676Search in Google Scholar PubMed

[9] A. Bueno-Orovio, D. Kay and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT 54 (2014), no. 4, 937–954. 10.1007/s10543-014-0484-2Search in Google Scholar

[10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. R. Astron. Soc. 13 (1967), 529–539. 10.1111/j.1365-246X.1967.tb02303.xSearch in Google Scholar

[11] A. Carpinteri, P. Cornetti and K. M. Kolwankar, Calculation of the tensile and flexural strength of disordered materials using fractional calculus, Chaos Solitons Fractals 21 (2004), 623–632. 10.1016/j.chaos.2003.12.081Search in Google Scholar

[12] G. Chen and T. Ueta, Yet another chaotic attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 7, 1465–1466. 10.1142/S0218127499001024Search in Google Scholar

[13] A. Cloot and J. F. Botha, A generalised groundwater flow equation using the concept of non-integer order derivatives, Water S. A. 32 (2006), 1–7. 10.4314/wsa.v32i1.5225Search in Google Scholar

[14] K. Diethelm and N. J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput. 154 (2004), no. 3, 621–640. 10.1016/S0096-3003(03)00739-2Search in Google Scholar

[15] I. Grigorenko and E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett. 91 (2003), Article ID 034101. 10.1103/PhysRevLett.91.034101Search in Google Scholar PubMed

[16] S. K. Han, C. Kurrer and Y. Kuramoto, Dephasing and bursting in coupled neural oscillators, Phys. Rev. Lett. 75 (1995), 3190–3193. 10.1103/PhysRevLett.75.3190Search in Google Scholar PubMed

[17] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, 2001. 10.1142/3779Search in Google Scholar

[18] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006. Search in Google Scholar

[19] M. Lakshmanan and K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific, River Edge, 1996. 10.1142/2637Search in Google Scholar

[20] C. Li and G. Chen, Chaos and hyperchaos in the fractional-order Rössler equations, Phys. A 341 (2004), no. 1–4, 55–61. 10.1016/j.physa.2004.04.113Search in Google Scholar

[21] C. Li, X. Liao and J. Yu, Synchronization of fractional order chaotic systems, Phys. Rev. E 68 (2003), Article ID 067203. 10.1103/PhysRevE.68.067203Search in Google Scholar PubMed

[22] C. G. Li and G. Chen, Chaos in the fractional order Chen system and its control, Chaos Solitons Fractals 22 (2004), 549–554. 10.1016/j.chaos.2004.02.035Search in Google Scholar

[23] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), no. 3, 2108–2131. 10.1137/080718942Search in Google Scholar

[24] J. G. Lu, Chaotic dynamics and synchronization of fractional-order Arneodo’s systems, Chaos Solitons Fractals 26 (2005), 1125–1133. 10.1016/j.chaos.2005.02.023Search in Google Scholar

[25] R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (2010), no. 5, 1586–1593. 10.1016/j.camwa.2009.08.039Search in Google Scholar

[26] R. L. Magin, Fractional calculus in bioengineering. Part 3, Crit. Rev. Biomed. Eng. 32 (2004), 195–377. 10.1615/CritRevBiomedEng.v32.i34.10Search in Google Scholar PubMed

[27] Z. Mao and J. Shen, Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients, J. Comput. Phys. 307 (2016), 243–261. 10.1016/j.jcp.2015.11.047Search in Google Scholar

[28] R. E. Mickens, Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2005. 10.1142/5884Search in Google Scholar

[29] A. M. Mishra, S. D. Purohit, K. M. Owolabi and Y. D. Sharma, A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus, Chaos Solitons Fractals 138 (2020), Article ID 109953. 10.1016/j.chaos.2020.109953Search in Google Scholar PubMed PubMed Central

[30] R. Mittal and S. Pandit, Quasilinearized Scale-3Haar wavelets-based algorithm for numerical simulation of fractional dynamical systems, Eng. Computation 35 (2018), 1907–1931. 10.1108/EC-09-2017-0347Search in Google Scholar

[31] J. D. Murray, Mathematical Biology. I: An Introduction, Springer, New York, 2003. 10.1007/b98869Search in Google Scholar

[32] J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Springer, New York, 2003. 10.1007/b98869Search in Google Scholar

[33] P. A. Naik, J. Zu and K. M. Owolabi, Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Phys. A 545 (2020), Article ID 123816. 10.1016/j.physa.2019.123816Search in Google Scholar

[34] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover, New York, 2006. Search in Google Scholar

[35] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer, New York, 2011. 10.1007/978-94-007-0747-4Search in Google Scholar

[36] K. M. Owolabi, Efficient Numerical Methods for Reaction-Diffusion Problems, VDM, Saarbrücken, 2016. Search in Google Scholar

[37] K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 304–317. 10.1016/j.cnsns.2016.08.021Search in Google Scholar

[38] K. M. Owolabi, Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann–Liouville derivative, Numer. Methods Partial Differential Equations 34 (2018), no. 1, 274–295. 10.1002/num.22197Search in Google Scholar

[39] K. M. Owolabi, Riemann–Liouville fractional derivative and application to model chaotic differential equations, Progr. Fract. Differ. Appl. 4 (2018), 99–110. 10.18576/pfda/040204Search in Google Scholar

[40] K. M. Owolabi, Mathematical modelling and analysis of love dynamics: A fractional approach, Phys. A 525 (2019), 849–865. 10.1016/j.physa.2019.04.024Search in Google Scholar

[41] K. M. Owolabi, Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann–Liouville derivative, Progr. Fract. Differ. Appl. 6 (2020), 1–14. 10.1002/num.22197Search in Google Scholar

[42] K. M. Owolabi and A. Atangana, Chaotic behaviour in system of noninteger-order ordinary differential equations, Chaos Solitons Fractals 115 (2018), 362–370. 10.1016/j.chaos.2018.07.034Search in Google Scholar

[43] K. M. Owolabi and A. Atangana, Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction—diffusion systems, Comput. Appl. Math. 37 (2018), no. 2, 2166–2189. 10.1007/s40314-017-0445-xSearch in Google Scholar

[44] K. M. Owolabi and A. Atangana, On the formulation of Adams-Bashforth scheme with Atangana–Baleanu–Caputo fractional derivative to model chaotic problems, Chaos 29 (2019), no. 2, Article ID 023111. 10.1063/1.5085490Search in Google Scholar PubMed

[45] K. M. Owolabi, J. F. Gómez-Aguilar and B. Karaagac, Modelling, analysis and simulations of some chaotic systems using derivative with Mittag-Leffler kernel, Chaos Solitons Fractals 125 (2019), 54–63. 10.1016/j.chaos.2019.05.019Search in Google Scholar

[46] J. H. Park and O. M. Kwon, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos Solitons Fractals 23 (2005), no. 2, 495–501. 10.1016/j.chaos.2004.05.023Search in Google Scholar

[47] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990), no. 8, 821–824. 10.1016/B978-012396840-1/50040-0Search in Google Scholar

[48] I. Petrás, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Berlin, 2011. 10.1007/978-3-642-18101-6Search in Google Scholar

[49] E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simul. 40 (2016), 112–128. 10.1016/j.cnsns.2016.04.020Search in Google Scholar

[50] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. Search in Google Scholar

[51] A. G. Radwan, K. Moaddy and S. Momani, Stability and non-standard finite difference method of the generalized Chua’s circuit, Comput. Math. Appl. 62 (2011), no. 3, 961–970. 10.1016/j.camwa.2011.04.047Search in Google Scholar

[52] A. G. Radwan, K. Moaddy, K. N. Salama, S. Momani and I. Hashim, Control and switching synchronization of fractional order chaotic systems using active control technique, J. Adv. Res. 5 (2014), 125–132. 10.1016/j.jare.2013.01.003Search in Google Scholar PubMed PubMed Central

[53] M. A. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Englewood Cliffs, 1966. Search in Google Scholar

[54] E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys. 228 (2009), no. 11, 4038–4054. 10.1016/j.jcp.2009.02.011Search in Google Scholar

[55] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer, New York, 1982. 10.1007/978-1-4612-5767-7Search in Google Scholar

[56] J. C. Strikwerda, Partial Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2004. 10.1137/1.9780898717938Search in Google Scholar

[57] D. Tripathi, S. K. Pandey and S. Das, Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel, Appl. Math. Comput. 215 (2010), no. 10, 3645–3654. 10.1016/j.amc.2009.11.002Search in Google Scholar

[58] T. Ueta and G. Chen, Bifurcation analysis of Chen’s equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 10 (2000), no. 8, 1917–1931. 10.1142/S0218127400001183Search in Google Scholar

[59] Q. Xu and J. S. Hesthaven, Stable multi-domain spectral penalty methods for fractional partial differential equations, J. Comput. Phys. 257 (2014), 241–258. 10.1016/j.jcp.2013.09.041Search in Google Scholar

[60] Y. Yu and H.-X. Li, The synchronization of fractional-order Rössler hyperchaotic systems, Phys. A 387 (2008), no. 5–6, 1393–1403. 10.1016/j.physa.2007.10.052Search in Google Scholar

Received: 2019-05-31
Revised: 2020-09-20
Accepted: 2020-12-05
Published Online: 2021-05-14
Published in Print: 2021-12-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2021-2053/html
Scroll to top button