Home An adapted integration method for Volterra integral equation of the second kind with weakly singular kernel
Article
Licensed
Unlicensed Requires Authentication

An adapted integration method for Volterra integral equation of the second kind with weakly singular kernel

  • Ahlem Nemer EMAIL logo , Hanane Kaboul and Zouhir Mokhtari
Published/Copyright: May 18, 2021

Abstract

In this paper, we consider general cases of linear Volterra integral equations under minimal assumptions on their weakly singular kernels and introduce a new product integration method in which we involve the linear interpolation to get a better approximate solution, figure out its effect and also we provide a convergence proof. Furthermore, we apply our method to a numerical example and conclude this paper by adding a conclusion

MSC 2010: 65D05; 45D05; 45F05

References

[1] J. M. Anderson, Mathematics for Quantum Chemistry, Courier Corporation, North Chelmsford, 2012. Search in Google Scholar

[2] S. András, Weakly singular Volterra and Fredholm–Volterra integral equations, Studia Univ. Babeş-Bolyai Math. 48 (2003), no. 3, 147–155. Search in Google Scholar

[3] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monogr. Appl. Comput. Math. 4, Cambridge University, Cambridge, 1997. 10.1017/CBO9780511626340Search in Google Scholar

[4] P. Baratella and A. P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2004), no. 2, 401–418. 10.1016/j.cam.2003.08.047Search in Google Scholar

[5] B. Bertram, On the product integration method for solving singular integral equations in scattering theory, J. Comput. Appl. Math. 25 (1989), no. 1, 79–92. 10.1016/0377-0427(89)90077-0Search in Google Scholar

[6] V. Bilet, O. Dovgoshey and J. Prestin, Boundedness of Lebesgue constants and interpolating Faber bases, preprint (2016), https://arxiv.org/abs/1610.05026. 10.20535/1810-0546.2017.4.108444Search in Google Scholar

[7] R. C. Blattberg, B.-D. Kim and S. A. Neslin, Database Marketing: Analyzing and Managing Customers, Springer, New York, 2008. 10.1007/978-0-387-72579-6Search in Google Scholar

[8] H. Brunner, The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Math. Comp. 45 (1985), no. 172, 417–437. 10.1090/S0025-5718-1985-0804933-3Search in Google Scholar

[9] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge Monogr. Appl. Comput. Math. 15, Cambridge University, Cambridge, 2004. 10.1017/CBO9780511543234Search in Google Scholar

[10] Y. Chen and T. Tang, Convergence analysis for the Chebyshev collocation methods to Volterra integral equations with a weakly singular kernel, SIAM J. Numer. Anal. 233 (2009), 938–950. 10.1016/j.cam.2009.08.057Search in Google Scholar

[11] Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp. 79 (2010), no. 269, 147–167. 10.1090/S0025-5718-09-02269-8Search in Google Scholar

[12] L. J. Corwin and R. H. Szczarba, Multivariable Calculus, Monogr. Textb. Pure Appl. Math. 64, Marcel Dekker, New York, 1982. Search in Google Scholar

[13] F. Cottet-Emard, Analyse 2: Calcul différentiel, intégrales multiples, séries de Fourier, De Boeck Supérieur, Bruxelles, 2006. Search in Google Scholar

[14] F. d’Almeida, O. Titaud and P. B. Vasconcelos, A numerical study of iterative refinement schemes for weakly singular integral equations, Appl. Math. Lett. 18 (2005), no. 5, 571–576. 10.1016/j.aml.2004.03.020Search in Google Scholar

[15] G. Debeaumarché, F. Dorra and M. Hochart, Mathématiques PSI-PSI*: Cours complet avec tests, exercices et problèmes corrigés, Pearson Education, Paris, 2010. Search in Google Scholar

[16] T. Diogo, N. B. Franco and P. Lima, High order product integration methods for a Volterra integral equation with logarithmic singular kernel, Commun. Pure Appl. Anal. 3 (2004), no. 2, 217–235. 10.3934/cpaa.2004.3.217Search in Google Scholar

[17] J. Douchet and B. Zwahlen, Calcul différentiel et intégral: fonctions réelles d’une ou de plusieurs variables réelles, PPUR Presses Polytechniques et Universitaires Romandes, Lausanne, 2006. Search in Google Scholar

[18] B. S. Gan, An Isogeometric Approach to Beam Structures: Bridging the Classical to Modern Technique, Springer, Cham, 2018. 10.1007/978-3-319-56493-7Search in Google Scholar

[19] L. Grammont, M. Ahues and H. Kaboul, An extension of the product integration method to L 1 with applications in astrophysics, Math. Model. Anal. 21 (2016), no. 6, 774–793. 10.3846/13926292.2016.1243590Search in Google Scholar

[20] L. Grammont and H. Kaboul, An improvement of the product integration method for a weakly singular Hammerstein equation, preprint (2016), https://hal.archives-ouvertes.fr/hal-01295843. Search in Google Scholar

[21] L. Grammont, H. Kaboul and M. Ahues, A product integration type method for solving nonlinear integral equations in L 1 , Appl. Numer. Math. 114 (2017), 38–46. 10.1016/j.apnum.2016.11.006Search in Google Scholar

[22] D. Guinin and B. Joppin, Mathématiques Analyse MP, Bréal, Paris, 2004. Search in Google Scholar

[23] M. Hazewinkel, Encyclopaedia of Mathematics. Vol. 1: A-Integral-Coordinates, Springer, New York, 2013. Search in Google Scholar

[24] K. B. Howell, Principles of Fourier Analysis, CRC Press, Boca Raton, 2001. 10.1201/9781420036909Search in Google Scholar

[25] B. A. Ibrahimoglu, Lebesgue functions and Lebesgue constants in polynomial interpolation, J. Inequal. Appl. 2016 (2016), Paper No. 93. 10.1186/s13660-016-1030-3Search in Google Scholar

[26] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Courier Corporation, North Chelmsford, 2012. Search in Google Scholar

[27] B. Jumarhon and S. McKee, Product integration methods for solving a system of nonlinear Volterra integral equations, J. Comput. Appl. Math. 69 (1996), no. 2, 285–301. 10.1016/0377-0427(95)00041-0Search in Google Scholar

[28] N. Kovvali, Theory and Applications of Gaussian Quadrature Methods, Morgan & Claypool, Williston, 2011. 10.2200/S00366ED1V01Y201105ASE008Search in Google Scholar

[29] P. K. Kythe and M. R. Schäferkotter, Handbook of Computational Methods for Integration, CRC Press, Boca Raton, 2004. 10.1201/9780203490303Search in Google Scholar

[30] G. Mastroianni and G. V. Milovanović, Interpolation Processes: Basic Theory and Applications, Springer, Berlin, 2008. 10.1007/978-3-540-68349-0Search in Google Scholar

[31] P. R. Mercer, More Calculus of a Single Variable, Springer, New York, 2014. 10.1007/978-1-4939-1926-0Search in Google Scholar

[32] M. Moskowitz and F. Paliogiannis, Functions of Several Real Variables, World Scientific, Hackensack, 2011. 10.1142/7672Search in Google Scholar

[33] F. N. Najm, Circuit Simulation, John Wiley & Sons, New York, 2010. 10.1002/9780470561218Search in Google Scholar

[34] Z. Nitecki, Calculus in 3D: Geometry, Vectors, and Multivariate Calculus, American Mathematical Society, Providence, 2018. Search in Google Scholar

[35] K. M. O’Connor, Calculus: Labs for Matlab, Jones & Bartlett Learning, Burlington, 2005. Search in Google Scholar

[36] A. Palamara Orsi, Product integration for Volterra integral equations of the second kind with weakly singular kernels, Math. Comp. 65 (1996), no. 215, 1201–1212. 10.1090/S0025-5718-96-00736-3Search in Google Scholar

[37] M. J. D. Powell, Approximation Theory and Methods, Cambridge University, Cambridge, 1981. 10.1017/CBO9781139171502Search in Google Scholar

[38] T. J. Rivlin, An Introduction to the Approximation of Functions, Courier Corporation, North Chelmsford, 2003. Search in Google Scholar

[39] K. H. Rosen, Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton, 1999. 10.1201/9781439832905Search in Google Scholar

[40] I. M. Roussos, Improper Riemann Integrals, CRC Press, Boca Raton, 2016. 10.1201/b16296Search in Google Scholar

[41] S. Sarfati and M. Fegyvères, Mathématiques: Méthodes, savoir-faire et astuces, Editions Bréal, Paris, 1997. Search in Google Scholar

[42] M. Schatzman, Numerical Analysis: A Mathematical Introduction, Oxford University, Oxford, 2002. 10.1093/oso/9780198502791.001.0001Search in Google Scholar

[43] S. J. Smith, Lebesgue constants in polynomial interpolation, Ann. Math. Inform. 33 (2006), 109–123. Search in Google Scholar

[44] G. W. Stewart, Afternotes Goes to Graduate School: Lectures on Advanced Numerical Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1998. 10.1137/1.9781611971422Search in Google Scholar

[45] S. M. Stewart, How to Integrate it: A Practical Guide to Finding Elementary Integrals, Cambridge University, Cambridge, 2017. 10.1017/9781108291507Search in Google Scholar

[46] G. Strang and K. Borre, Linear algebra, geodesy and GPS, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1997. Search in Google Scholar

[47] T. Tang, X. Xu and J. Cheng, On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math. 26 (2008), no. 6, 825–837. Search in Google Scholar

[48] S. S. M. Wong, Computational Methods in Physics and Engineering, 2nd ed., World Scientific, Singapore, 1997. 10.1142/3365Search in Google Scholar

[49] W. Y. Yang, W. Cao, T.-S. Chung and J. Morris, Applied Numerical Methods Using MATLAB, John Wiley & Sons, Hoboken, 2005. 10.1002/0471705195Search in Google Scholar

[50] V. A. Zorich, Mathematical Analysis. I, Springer, Berlin, 2004. Search in Google Scholar

Received: 2019-10-10
Revised: 2020-09-13
Accepted: 2021-01-17
Published Online: 2021-05-18
Published in Print: 2021-12-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2021-2055/html
Scroll to top button