Abstract
Diiron macrocyclic complexes have been often considered as catalytically inert. However, numerous published examples of the catalytic oxidation reactions mediated by these complexes indicate their potential in catalysis. Mechanistic background for their applications as oxidation catalysts and their relationship with enzymatic and biomimetic oxidation involving cytochrome P-450 and soluble methane monooxygenase are discussed. A special emphasis was put on the N-bridged diiron phthalocyanine complexes as an emerging class of oxidation catalysts. Their unusual Fe(μN)Fe structure has interesting catalytic properties and reactivity. In addition to oxidation of strong C–H bonds in alkanes including methane, aromatic, and alkylaromatic compounds, μ-nitrido diiron phthalocyanines catalyze the oxidative dehalogenation and the formation of C–C bonds. A clean and practical character of the catalytic systems coupled with real availability of the phthalocyanines suggests a possibility of the application of this approach in industry. Great potential for further developments by modification of the catalysts structure can be envisioned.
The author thanks his coworkers for their valuable contributions to the development of this project. Their names are given in the references. The author is especially grateful to Dr. Pavel Afanasiev and Dr. Evgeny Kudrik for their fruitful collaboration and exciting discussions. This research was supported by the Agence National de Recherche (ANR, France, grant ANR-08-BLANC-0183-01).
References
Afanasiev, P.; Bouchu, D.; Millet, J. M. M.; Kudrik, E. V.; Sorokin, A. B. Stable N-bridged diiron(IV) phthalocyanine cation radical complexes: synthesis and properties. Dalton Trans. 2009, 9828–9836.10.1039/b916047gSearch in Google Scholar PubMed
Afanasiev, P.; Kudrik, E. V.; Millet, J. M. M.; Bouchu, D.; Sorokin, A. B. High-valent diiron species generated from N-bridged diiron phthalocyanine and H2O2. Dalton Trans. 2011, 40, 701–710.10.1039/C0DT00958JSearch in Google Scholar
Afanasiev, P.; Kudrik, E. V.; Albrieux, F.; Briois, V.; Koifman, O. I.; Sorokin, A. B. Generation and characterization of high-valent iron oxo phthalocyanine. Chem. Commun. 2012, 48, 6088–6090.10.1039/c2cc31917aSearch in Google Scholar
Aliaga-Alcalde, N.; DeBeer George, S.; Mienert, B.; Bill, E.; Wieghardt, K.; Neese, F. The geometric and electronic structure of [(cyclam-acetato)Fe(N)]+: a genuine iron(V) species with a ground-state spin S = ½. Angew. Chem. Int. Ed. 2005, 44, 2908–2912.10.1002/anie.200462368Search in Google Scholar
Alvarez, L. X.; Kudrik, E. V.; Sorokin, A. B. Novel reactivity of N-bridged diiron phthalocyanine in the activation of C-H bonds: hydroacylation of olefins as an example of the efficient formation of C-C bonds. Chem. Eur. J. 2011, 17, 9298–9301.10.1002/chem.201100650Search in Google Scholar
Bach, R. D. The rate-limiting step in P450 hydroxylation of hydrocarbons. A direct comparison of the “somersault” versus the “consensus” mechanism involving Compound I. J. Phys. Chem. A. 2010, 114, 9319–9332.10.1021/jp1045518Search in Google Scholar
Baik, M.-H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J. Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev. 2003, 103, 2385–2419.10.1021/cr950244fSearch in Google Scholar
Balch, A. L.; Chan, Y. W.; Cheng, R. J.; La Mar, G. N.; Latos-Grazynski, L.; Renner, M. W. Oxygenation patterns for iron(II) porphyrins. Peroxo and ferryl (FeIVO) intermediates detected by 1H nuclear magnetic resonance spectroscopy during oxygenation of (tetramesitylporphyrin)iron(II). J. Am. Chem. Soc. 1984, 106, 7779–7785.10.1021/ja00337a022Search in Google Scholar
Berry, J. F.; Bill, E.; Bothe, E.; DeBeer George, S.; Mienert, B.; Neese F.; Wieghardt, K. An octahedral coordination complex of iron(VI). Science 2006, 312, 1937–1941.10.1126/science.1128506Search in Google Scholar
Beyrhouty, M.; Sorokin, A. B.; Daniele, S.; Hubert-Pfalzgraf, L. G. Combination of two catalytic sites in a novel nanocrystalline TiO2-iron tetrasulfophthalocyanine material provides better catalytic properties. New J. Chem. 2005, 29, 1245–1248.10.1039/b507211eSearch in Google Scholar
Bottomley, L. A.; Gorce, J.-N.; Goedken, V. L.; Ercolani, C. Spectroelectrochemistry of a μ-nitrido-bridged iron phthalocyanine dimer. Inorg. Chem. 1985, 24, 3733–3737.10.1021/ic00217a008Search in Google Scholar
Brausam, A.; Eigler, S.; Jux, N.; van Eldik, R. Mechanistic investigations of the reactions of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate). Inorg. Chem. 2009, 48, 7667–7678.10.1021/ic9005955Search in Google Scholar
Che, C.-M.; Kar-Yan Lo, V.; Zhou, C. Y.; Huang, J.-S. Selective functionalization of saturated C-H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 2011, 40, 1950–1975.10.1039/c0cs00142bSearch in Google Scholar
Chin, D.-H.; La Mar, G. N.; Balch, A. L. On the mechanism of autoxidationof iron(II) porphyrins. Detection of a peroxo-bridged iron(III) porphyrin dimer and the mechanism of its thermal decomposition to the oxo-bridged iron(III) porphyrin dimer. J. Am. Chem. Soc. 1980, 102, 4344–4350.10.1021/ja00533a009Search in Google Scholar
Collman, J. P.; Chien, A. S.; Eberspacher, T. A.; Brauman, J. I. Multiple active oxidants in cytochrome P-450 model oxidations. J. Am. Chem. Soc. 2000, 122, 11098–11100.10.1021/ja000961dSearch in Google Scholar
Company, A.; Gomez, L.; Güell, M.; Ribas, X.; Luis, J. M.; Que, L., Jr.; Costas, M. Alkane hydroxylation by a nonheme iron catalyst that challenges the heme paradigm for oxygenase action. J. Am. Chem. Soc. 2007, 129, 15766–15767.10.1021/ja077761nSearch in Google Scholar
Costas, M. Selective C-H oxidation catalyzed by metalloporphyrins. Coord. Chem. Rev. 2011, 255, 2912–2932.10.1016/j.ccr.2011.06.026Search in Google Scholar
Costas, M.; Rohde, J.-U.; Stubna, A.; Ho, R. Y. N.; Quaroni, L.; Münck, E.; Que, L., Jr. A synthetic model for the putative FeIV2O2 diamond core of methane monooxygenase intermediate Q. J. Am. Chem. Soc. 2001, 123, 12931–12932.10.1021/ja017204fSearch in Google Scholar
Das, P.; Que, L., Jr. Iron catalyzed competitive olefin oxidation and ipso-hydroxylation of benzoic acids: further evidence for an FeV=O oxidant. Inorg. Chem. 2010, 49, 9479–9485.10.1021/ic101144sSearch in Google Scholar
De Boer, J. W.; Browne, W. R.; Brinksma, J.; Alsters, P. L.; Hage, R.; Feringa, B. L. Mechanism of cis-dihydroxyaltion and epoxidation of alkenes by highly H2O2 efficient dinuclear manganese catalysts. Inorg. Chem. 2007, 46, 6353–6372.10.1021/ic7003613Search in Google Scholar
De Visser, S. P.; Shaik, S. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome P450 enzymes. J. Am. Chem. Soc. 2003, 125, 7413–7424.10.1021/ja034142fSearch in Google Scholar
De Vos, D. E.; De Wildeman, S.; Sels, B. F.; Grobet, P. J.; Jacobs, P. A. Angew. Chem. Int. Ed. Selective alkene oxidation with H2O2 and a heterogenized Mn catalyst: epoxidation and a new entry to vicinal cis-diols. 1999, 38, 980–983.10.1002/(SICI)1521-3773(19990401)38:7<980::AID-ANIE980>3.0.CO;2-WSearch in Google Scholar
Dicken, C. M.; Balasubramanian, P. N.; Bruice, T. C. Oxygen transfer from p-cyano-N,N-dimethylaniline N-oxide to the μ-oxo dimer of (meso-tetraphenylporphinato) iron(III). Inorg. Chem. 1988, 27, 197–200.10.1021/ic00274a040Search in Google Scholar
Dieing, R.,; Schmid, G.; Witke, E.; Feucht, C.; Dreßen M.; Pohmer, J.; Hanack, M. Soluble substituted μ-oxo(phthalocyaninato)iron (III) dimers. Chem. Ber. 1995, 128, 589–598.10.1002/cber.19951280611Search in Google Scholar
Donzello, M. P.; Ercolani, C.; Kadish, K. M.; Ou, Z.; Russo, U. Synthesis, chemical-physical characterization, and redox properties of a new mixed-ligand heterobimetallic N-bridged dimer: (μ-nitrido)[((tetraphenylporphyrinato)manganese((phthalocyaninato)iron)]. Inorg. Chem. 1998, 37, 3682–3688.10.1021/ic971585+Search in Google Scholar
Donzello, M. P.; Ercolani, C.; Russo, U.; Chiesi-Villa, A.; Rizzoli, C. Metal- and ligand-centered monoelectronic oxidation of μ-nitrido[((tetraphenylporphyrinato)manganese(phthalocyanin-atoiron)], [(TPP)Mn-N-FePc]. X-ray crystal structure of the Fe(IV)-containing species [(THF)(TPP)Mn-N-FePc(H2O)](I5).2THF. Inorg. Chem. 2001, 40, 2963–2967.10.1021/ic000874mSearch in Google Scholar
Dubois, G.; Murphy, A.; Stack, T. D. P. Simple iron catalyst for terminal alkene epoxidation. Org. Lett. 2003, 5, 2469–2472.10.1021/ol0347085Search in Google Scholar
Duerr, K.; Olah, J.; Davydov, R.; Kleimann, M.; Li, J.; Lang, N.; Puchta, R.; Hübner, E.; Drewello, T.; Harvey, J. N.; et al. Studies on an iron(III)-peroxo porphyrin. Iron(III)-peroxo or iron(II)-superoxo? Dalton Trans. 2010, 39, 2049–2056.10.1039/b920237dSearch in Google Scholar
Dumoulin, F.; Durmus, M.; Ahsen, V.; Nyokong, T. Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord. Chem. Rev. 2010, 254, 2792–2847.10.1016/j.ccr.2010.05.002Search in Google Scholar
Egami, H.; Katsuki, T. Nb(salan)-catalyzed asymmetric epoxidation of allylic alcohols with hydrogen peroxide. Angew. Chem. Int. Ed. 2008, 47, 5171–5174.10.1002/anie.200800797Search in Google Scholar
Ercolani, C.; Floris, B. Metal Phthalocyanine Single-Atom Bridged Dimers. Part 2. Recent Results. In Phthalocyanines: Properties and Applications. Leznoff, C. C.; Lever, A. B. P., Eds. VCH: New York, 1996; Vol. 4, pp. 405–425.10.1002/chin.199746258Search in Google Scholar
Ercolani, C.; Monacelli, F. Unequivocal evidence about the presence of Fe(III) in μ-oxo-bis(tetrakis(t-butyl)phthalocyaninatoiron). J. Porphyrins Phthalocyanines 2001, 5, 668–673.10.1002/jpp.376.absSearch in Google Scholar
Ercolani, C.; Gardini, M.; Pennesi, G.; Rossi, G.; Russo, U. High-valent iron phthalocyanine μ-nitrido dimers. Inorg. Chem. 1988, 27, 422–424.10.1021/ic00275a036Search in Google Scholar
Ercolani, C.; Hewage, S.; Heucher, R.; Rossi, G. First example of a mixed-ligand bimetallic (Fe-Fe) N-bridged dimer: (μ-nitrido)[((tetraphenylporphyrinato)iron-(phthalocyaninato) iron]. Inorg. Chem. 1993, 32, 2975–2977.10.1021/ic00065a031Search in Google Scholar
Ercolani, C.; Jubb, J.; Pennesi, G.; Russo, U.; Trigiane, G. (μ-nitrido)((tetraphenylporphyrinato)iron((phthalocyaninato)iron) and its Fe-Ru analogue: redox behavior and characterization of new Fe(IV)-containing species. X-ray crystal structure of [(THF)(TPP)Fe-N-FePc(H2O)](I5).2THF. Inorg. Chem. 1995, 34, 2535–2541.10.1021/ic00114a010Search in Google Scholar
Fertinger, C.; Hessenauer-Ilicheva, N.; Franke, A.; van Eldik, R. Direct comparison of the reactivity of model complexes for Compounds 0, I, and II in oxygenation, hydrogen-abstraction, and hydride-transfer processes. Chem. Eur. J. 2009, 15, 13435–13440.10.1002/chem.200901804Search in Google Scholar
Floris, B., Donzello, M. P.; Ercolani, C. Single-Atom Bridged Dinuclear Metal Complexes with Emphasis on Phthalocyanine Systems. In Porphyrin Handbook. Kadish, K. M.; Smith, K. M.; Guilard, R., Eds. Elsevier Science: San Diego, CA, 2003; Vol. 18, pp. 1–62.10.1016/B978-0-08-092392-5.50007-9Search in Google Scholar
Franke, A.; Fertinger, C.; van Eldik, R. Cytochrome P-450 enzyme mimics in ‘peroxo-shunt’ oxidation reactions – a kinetic and mechanistic approach. Bioinorg. React. Mech. 2011, 7, 5–26.10.1515/BIRM.2011.001Search in Google Scholar
Friedle, S.; Reisner, E.; Lippard, S. J. Current challenges of modelling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 2010, 39, 2768–2779.10.1039/c003079cSearch in Google Scholar
Geraskin, I. M.; Luedtke, M. W.; Neu, H. M.; Nemykin, V. N.; Zhdankin V. V. Organic iodine(V) compounds as terminal oxidants in iron(III) phthalocyanine catalyzed oxidation of alcohols. Tetrahedron Lett. 2008, 49, 7410–7412.10.1016/j.tetlet.2008.10.060Search in Google Scholar
Geraskin, I. M.; Pavlova, O.; Neu, H. M.; Yusupov, M. S.; Nemykin, V. N.; Zhdankin, V. V. Comparative reactivity of hypervalent iodine oxidants in metalloporphyrin-catalyzed oxygenation of hydrocarbons: iodosylbenzene sulfate and 2-iodylbenzoic acid ester as safe and convenient alternatives to iodosylbenzene. Adv. Synth. Cat. 2009, 351, 733–737.10.1002/adsc.200800784Search in Google Scholar
Ghosh, A.; de Oliveira, F. T.; Yano, T.; Nishioka, T.; Beach, E. S.; Kinoshita, I.; Münck, E.; Ryabov, A. D.; Horwitz, C. P.; Collins, T. J. Catalytically active μ-oxodiiron(IV) oxidants from iron(III) and dioxygen. J. Am. Chem. Soc. 2005, 127, 2505–2513.10.1021/ja0460458Search in Google Scholar
Goedken V. L.; Ercolani C. Nitrido-bridged iron phthalocyanine dimers: synthesis and characterization. J. Chem. Soc. Chem. Commun. 1984, 378–379.10.1039/c39840000378Search in Google Scholar
Gonzalez, L.-M.; Villa de P.; A. L.; Montes de C., C.; Sorokin, A. B. Allylic oxidation of cyclohexene over silica immobilized iron tetrasulfophthalocyanine Tetrahedron Lett. 2006, 47, 6465–6468.10.1016/j.tetlet.2006.06.137Search in Google Scholar
Grapperhaus, C. A.; Mienert, B.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Mononuclear (nitrido)iron(V) and (oxo)iron(IV) complexes via photolysis of [(cyclam-acetato)FeIII(N3)]+ and ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in water/acetone mixtures. Inorg. Chem. 2000, 39, 5306–5317.10.1021/ic0005238Search in Google Scholar
Guo, C.-C. Synthesis of μ-oxo-bisiron(III)porphyrin compounds and their catalysis for cyclohexane hydroxylation. J. Catal. 1998, 178, 182–187.10.1006/jcat.1998.2138Search in Google Scholar
Guo, C.-C.; Li, H.-P.; Xu, J.-B. Study of synthesis of μ-oxo-bismanganese(III)porphyrin compounds and their catalysis for cyclohexane oxidation by PhIO. J. Catal. 1999, 185, 345–351.10.1006/jcat.1999.2496Search in Google Scholar
Haak, R. M.; Wezenberg, S. J.; Kleij, A. W. Cooperative multimetallic catalysis using metallosalens. Chem. Commun. 2010, 46, 2713–2723.10.1039/c001392gSearch in Google Scholar
Hadasch, A.; Sorokin, A.; Rabion, A.; Fraisse, L.; Meunier, B. Oxidation of 2,4,6-trichlorophenol (TCP) catalyzed by iron tetrasulfophthalocyanine (FePcS) supportged on a cationic ion-exchange resin. Bull. Soc. Chim. Fr. 1997, 134, 1025–1032.Search in Google Scholar
Harischandra, D. N.; Lowery, G.; Zhang, R.; Newcomb, M. Production of a putative iron(V)-oxocorrole species by photo-disproportionation of a bis-corrole-diiron(IV)-μ-oxo dimer: implication for a green oxidation catalyst. Org. Lett. 2009, 11, 2089–2092.10.1021/ol900480pSearch in Google Scholar
Hodgkiss, J. M.; Chang, C. J.; Pistorio, B. J.; Nocera, D. G. Transient absorption of the Pacman effect in spring-loaded diiron(III) μ-oxo bisporphyrins. Inorg. Chem. 2003, 42, 8270–8277.10.1021/ic034751oSearch in Google Scholar
Isci ü.; Afanasiev P.; Millet J. M. M.; Kudrik E. V.; Ahsen V.; Sorokin A. B. Preparation and characterization of μ-nitrido diiron phthalocyanines with electron-withdrawing substituents: application for catalytic aromatic oxidation. Dalton Trans. 2009, 7410–7420.10.1039/b902592hSearch in Google Scholar PubMed
Isci, ü.; Dumoulin, F.; Ahsen, V.; Sorokin, A. B. Preparation of N-bridged diiron phthalocyanines bearing bulky or small electron-withdrawing substituents. J. Porphyrins Phthalocyanines 2010, 14, 324–334.10.1142/S1088424610002069Search in Google Scholar
Jensen, L. M. R.; Sanishvili, R.; Davidson, V. L.; Wilmot, C. M. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Science 2010, 327, 1392–1394.10.1126/science.1182492Search in Google Scholar
Jerina, D. M.; Daly, J. W. Arene oxides – new aspect of drug metabolism. Science 1974, 185, 573–582.10.1126/science.185.4151.573Search in Google Scholar
Jin, N.; Lahaye, D. E.; Groves, J. T. A “push-pull” mechanism for heterolytic O-O bond cleavage in hydroperoxo manganese porphyrins. Inorg. Chem. 2010, 49, 11516–11524.10.1021/ic1015274Search in Google Scholar
Jüstel, T.; Müller, M.; Weyhermüller, T.; Kressl, C.; Bill, E.; Hildebrandt, P.; Lenglen, M.; Grodzicki, M.; Trautwein, A. X.; Nuber, B.; et al. The molecular and electronic structure of symmetricallly and asymmetrically coordinated, non-heme iron complexes containing [FeIII(μ-N)FeIV]4+ (S=3/2) and [FeIV(μ-N)FeIV]5+ (S=0) cores. Chem. Eur. J. 1999, 5, 793–810.10.1002/(SICI)1521-3765(19990201)5:2<793::AID-CHEM793>3.0.CO;2-2Search in Google Scholar
Kachkarova-Sorokina, S. L.; Gallezot, P.; Sorokin, A. B. A novel clean catalytic method for waste-free modification of polysaccharides by oxidation. Chem. Commun. 2004, 2844–2845.10.1039/b411694aSearch in Google Scholar PubMed
Kennedy, B. J.; Murray, K. S.; Homborg, H.; Kalz, W. Iron(IV) phthalocyanines. Magnetic and spectral features of μ-nitrido-iron-phthalocyanine, (FePc)2N and of some oxidized derivatives. Inorg. Chim. Acta 1987, 134, 19–21.10.1016/S0020-1693(00)84449-7Search in Google Scholar
Kholdeeva, O. A.; Zalomaeva, O. V.; Sorokin, A. B.; Ivanchikova, I. D.; Della Pina, C.; Rossi, M. New routes to vitamin K3. Catal. Today 2007, 121, 58–64.10.1016/j.cattod.2006.11.011Search in Google Scholar
Kitagishi, H.; Tamaki, M.; Ueda, T.; Hirota, S.; Ohta, T.; Naruta, Y.; Kano, K. Oxoferryl porphyrin/hydrogenperoxide system whose behavior is equivalent to hydroperoxoferric porphyrin. J. Am. Chem. Soc. 2010, 132, 16730–16732.10.1021/ja106798aSearch in Google Scholar
Korendovich, I. V.; Kryatov, S. V.; Rybak-Akimova, E. V. Dioxygen activation at non-heme iron: insights from rapid kinetic studies. Acc. Chem. Res. 2007, 40, 510–521.10.1021/ar600041xSearch in Google Scholar
Kudrik, E. V.; Sorokin, A. B. N-bridged diiron phthalocyanine catalyzes oxidation of benzene with H2O2 via benzene oxide with NIH shift evidenced by using 1,3,5-[D3]benzene as a probe. Chem. Eur. J. 2008, 14, 7123–7126.10.1002/chem.200800504Search in Google Scholar
Kudrik, E. V.; Afanasiev, P.; Bouchu, D.; Millet, J. M. M.; Sorokin A. B. Diiron N-bridged species bearing phthalocyanine ligand catalyzes oxidation of methane, propane and benzene under mild conditions. J. Porphyrins Phthalocyanines 2008, 12, 1078–1089.10.1142/S1088424608000431Search in Google Scholar
Kudrik, E. V.; Afanasiev, P.; Sorokin A. B. Synthesis and properties of FeIII–N=MnIV heterometallic complex with tetra-tert-butylphthalocyanine ligands. Macroheterocycles 2010, 3, 19–22.10.6060/mhc2010.1.19Search in Google Scholar
Kudrik, E. V.; Afanasiev, P.; Bouchu, D.; Sorokin, A. B. Solvent-dependent rotational phenomena in μ-nitrido-[2,3,9,10,16,17,23,24-octa(n-pentoxy)phthalocyaninato]diiron complex. J. Porphyrins Phthalocyanines 2011, 15, 583–591.10.1142/S1088424611003495Search in Google Scholar
Kudrik, E. V.; Safonova, O.; Glatzel, P.; Swarbrick, J. C.; Alvarez, L. X.; Sorokin, A. B.; Afanasiev, P. Study of N-bridged diiron phthalocyanine relevant to methane oxidation: insight into oxidation and spin states from high resolution 1s core hole X-ray spectroscopy. Appl. Catal. B: Environ. 2012, 113–114, 43–51.10.1016/j.apcatb.2011.11.028Search in Google Scholar
Kundu, S.; Thompson, J. V. K.; Ryabov, A. D.; Collins, T. J. On the reactivity of mononuclear iron(V)oxo complexes. J. Am. Chem. Soc. 2011, 133, 18546–18549.10.1021/ja208007wSearch in Google Scholar
Li, X.; Fu, R.; Lee, S.; Krebs, C.; Davidson, V. L.; Liu, A. A catalytic di-heme bis-Fe(IV) intermediate, alternative to an Fe(IV)=O porphyrin radical. Proc. Natl. Acad. Sci. USA 2008, 105, 8597–8600.10.1073/pnas.0801643105Search in Google Scholar
Lindsey, J. S.; MacCrum, K. A.; Tyhonas, J. S.; Chuang, Y.-Y. Investigation of a synthesis of meso-porphyrins employing high concentration conditions and an electron transport chain for aerobic oxidation. J. Org. Chem. 1994, 59, 579–587.10.1021/jo00082a014Search in Google Scholar
Lippard, S. J. Hydroxylation of C-H bonds at carboxylate-bridged diiron centers Phil. Trans. R. Soc. A 2005, 363, 861–877.10.1098/rsta.2004.1532Search in Google Scholar PubMed
Lu, H.; Zhang, X. P. Catalytic C-H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 2011, 40, 1899–1909.10.1039/C0CS00070ASearch in Google Scholar
Lukyanets E. A.; Nemykin, V. N. The key role of peripheral substituents in the chemistry of phthalocyanines and their analogs. J. Porphyrins Phthalocyanines 2010, 14, 1–40.10.1142/S1088424610001799Search in Google Scholar
Lyakin, O. Y.; Bryliakov, K. P.; Britovsek, G. J. P.; Talsi, E. P. EPR spectroscopic trapping of the active species of nonheme iron-catalyzed oxidation. J. Am. Chem. Soc. 2009, 131, 10798–10799.10.1021/ja902659cSearch in Google Scholar
Lyakin, O. Y.; Bryliakov, K. P.; Talsi, E. P. EPR, 1H and 2H NMR, and reactivity studies of the iron-oxygen intermediates in bioinspired catalyst systems. Inorg. Chem. 2011, 50, 5526–5538.10.1021/ic200088eSearch in Google Scholar
Mangematin, S.; Sorokin, A. B. Synthesis and catalytic properties of a novel phthalocyanine covalently grafted onto silica. J. Porphyrins Phthalocyanines 2001, 5, 674–680.10.1002/jpp.379.absSearch in Google Scholar
Marchi-Delapierre, C.; Jorge-Robin, A.; Thibon, A.; Ménage, S. A new chiral diiron catalyst for enantioselective epoxidation. Chem. Commun. 2007, 1166–1168.10.1039/B616172CSearch in Google Scholar
Mekmouche, Y.; Hummel, H.; Ho, R. Y. N.; Que, L., Jr.; Schünemann, V.; Thomas, F.; Trautwein, A. X.; Lebrun, C.; Gorgy, K.; et al. Sulfide oxidation by hydrogen peroxide catalyzed by iron complexes: two metal centers are better than one. Chem. Eur. J. 2002, 8, 1196–1204.10.1002/1521-3765(20020301)8:5<1196::AID-CHEM1196>3.0.CO;2-ZSearch in Google Scholar
Ménage, S.; Vincent, J. M.; Lambeaux, C.; Chottard, G.; Grand, A.; Fontecave, M. Alkane oxidation catalyzed by μ-oxo-bridged diferric complexes: a structure/reactivity correlation study. Inorg. Chem. 1993, 32, 4766–4773.10.1021/ic00074a019Search in Google Scholar
Ménage, S.; Vincent, J. M.; Lambeaux, C.; Fontecave, M. μ-Oxo-bridged diiron(III) complexes and H2O2: monooxygenase- and catalase-like activities. J. Chem. Soc. Dalton Trans. 1994, 2081–2084.10.1039/DT9940002081Search in Google Scholar
Merkx, M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, J. L.; Müller, J.; Lippard, S. J. Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew. Chem. Int. Ed. 2001, 40, 2782–2807.10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-PSearch in Google Scholar
Meunier, B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev. 1992, 92, 1411–1456.10.1021/cr00014a008Search in Google Scholar
Meyer, K.; Bill, E.; Mienert, B.; Weyhermüller, T.; Weighardt, K. Photolysis of cis- and trans-[FeIII(cyclam)(N3)2]+ complexes: spectroscopic characterization of a nitridoiron(V) species. J. Am. Chem. Soc. 1999, 121, 4859–4876.10.1021/ja983454tSearch in Google Scholar
Mitchell, K. H.; Rogge, C. E.; Gierahn, T.; Fox, B. G. Insight into the mechanism of aromatic hydroxylation by toluene 4-monooxygenase by use of specifically deuterated toluene and p-xylene. Proc. Natl. Acad. Sci. USA. 2003, 100, 3784–3789.10.1073/pnas.0636619100Search in Google Scholar
Moubaraki, P. B.; Benlian, D.; Baldy, A.; Pierrot, M. μ-Nitruro-bis[bromo(phthalocyaninato)fer], (BrFePc]2N. Acta Cryst. 1989, C45, 393–394.10.1107/S0108270188012442Search in Google Scholar
Nam, W. High-valent iron(IV)–oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc. Chem. Res. 2007, 40, 522–531.10.1021/ar700027fSearch in Google Scholar
Nam, W.; Han, H. J.; Oh, S.-Y.; Lee, Y. J.; Choi, M. H.; Han, S.-Y.; Kim, C.; Woo, S. K.; Shin, W. New insights into the mechanisms of O-O bond cleavage of hydrogen peroxide and tert-alkyl hydroperoxides by iron(III) porphyrin complexes. J. Am. Chem. Soc. 2000, 122, 8677–8684.10.1021/ja994403eSearch in Google Scholar
Nemykin, V. N.; Chenii, V. Ya; Volkov, S. V.; Bundina, N. I.; Kaliya, O. L.; Li, V. D.; Lukyanets, E. A. Further studies on the oxidation state of iron in μ-oxo dimeric phthalocyanine complexes. J. Porphyrins Phthalocyanines 1999, 3, 87–98.10.1002/(SICI)1099-1409(199902)3:2<87::AID-JPP108>3.0.CO;2-GSearch in Google Scholar
Nemykin, V. N.; Lukyanets E. A. Synthesis of substituted phthalocyanines. ARKIVOC 2010, 136–208.10.3998/ark.5550190.0011.104Search in Google Scholar
Neu, H. M.; Yusupov, M. S.; Zhdankin, V. V.; Nemykin, V. N. Binuclear iron(III) phthalocyanine(μ-oxodimer)-catalyzed oxygenation of aromatic hydrocarbons with iodosylbenzene sulfate and iodosylbenzene as the oxidants. Adv. Synth. Cat. 2009, 351, 3168–3174.10.1002/adsc.200900705Search in Google Scholar
Neu, H. M.; Zhdankin, V. V.; Nemykin, V. N. Binuclear iron(III) phthalocyanine(μ-oxodimer)/tetrabutylammonium oxone: a powerful catalytic system for oxidation of hydrocarbons in organic solution. Tetrahedron Lett. 2010, 51, 6545–6548.10.1016/j.tetlet.2010.10.023Search in Google Scholar
Ortiz de Montellano, P. R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 2010, 110, 932–948.10.1021/cr9002193Search in Google Scholar
Pan, Z.; Zhang, R.; Fung, L. W.-M.; Newcomb, M. Photochemical production of a highly reactive porphyrin-iron-oxo species. Inorg. Chem. 2007, 46, 1517–1519.10.1021/ic061972wSearch in Google Scholar
Pan, Z.; Wang, Q.; Sheng, X.; Horner, J. H.; Newcomb, M. Highly reactive porphyrin-iron-oxo derivatives produced by photolysis of metastable porphyrin-iron(IV) diperchlorates. J. Am. Chem. Soc. 2009, 131, 2621–2628.10.1021/ja807847qSearch in Google Scholar
Parton, R. F.; Vankelecom, I. F. J.; Casselman, M. J. A.; Bezoukhanova, C. P.; Uytterhoeven, J. B.; Jacobs, P. A. An efficient mimic of cytochrome P-450 from a zeolite engaged iron complex in a polymer membrane. Nature 1994, 370, 541–544.10.1038/370541a0Search in Google Scholar
Pergrale, C.; Sorokin, A. B. Designing a dimer phthalocyanine supported catalyst for the selective oxidation of aromatic compounds. C. R. Chimie 2000, 3, 803–810.10.1016/S1387-1609(00)01186-5Search in Google Scholar
Pérollier, C.; Sorokin, A. B. Preparation of α,β-acetylenic ketones by catalytic heterogeneous oxidation of alkynes. Chem. Commun. 2002, 1548–1549.Search in Google Scholar
Pérollier, C.; Pergrale-Mejean, C.; Sorokin, A. B. Mechanistic diversity of the selective oxidations mediated by supported iron phthalocyanine complexes. New J. Chem. 2005, 29, 1400–1403.10.1039/b511231aSearch in Google Scholar
Petrenko, T.; DeBeer George, S.; Aliaga-Alcalde, N.; Bill, E.; Mienert, B.; Xiao, Y.; Guo, Y. S.; Sturhahn, W.; Cramer, S. P.; Wieghardt K.; et al. Characterization of a genuine iron(V)-nitrido species by nuclear resonant vibrational spectroscopy coupled to density functional calculations. J. Am. Chem. Soc. 2007, 129, 11053–11060.10.1021/ja070792ySearch in Google Scholar
Pettigrew, G. W.; Echalier, A.; Pauleta, S. R. Structure and mechanism in the bacterial dihaem cytochrome c peroxidases. J. Inorg. Biochem. 2006, 100, 551–567.10.1016/j.jinorgbio.2005.12.008Search in Google Scholar
Prat, I.; Mathieson, J. S.; Güell, M.; Ribas, X.; Luis, J. M.; Cronin, L.; Costas, M. Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C-H and C=C oxidation reactions. Nat. Chem. 2011, 3, 788–793.10.1038/nchem.1132Search in Google Scholar
Que, L., Jr.; Tolman, W. B. Biologically inspired oxidation catalysts. Nature 2008, 455, 333–340.10.1038/nature07371Search in Google Scholar
Ravikanth, M.; Achim, C.; Tyhonas, J. S.; Münck, E.; Lindsey, J. S. Investigation of phthalocyanine catalysts for the aerobic synthesis of meso-substituted porphyrins. J. Porphyrins Phthalocyanines 1997, 1, 385–394.10.1002/(SICI)1099-1409(199710)1:4<385::AID-JPP42>3.0.CO;2-ISearch in Google Scholar
Rittle, J.; Green, M. T. Cytochrome P-450 compound I: capture, characterization and C-H bond activation kinetics. Science 2010, 330, 933–937.10.1126/science.1193478Search in Google Scholar PubMed
Rosental, J.; Pistorio, B. J.; Chng, L. L.; Nocera, D. G. Aerobic catalytic photooxidation of olefins by an electron-deficient Pacman bisiron(III) μ-oxo porphyrin. J. Org. Chem. 2005, 70, 1885–1888.10.1021/jo048570vSearch in Google Scholar
Rosental, J.; Luckett, T. D.; Hodgkiss, J. M.; Nocera, D. G. Photocatalytic oxidation of hydrocarbons by a bis-iron(III)-μ-oxo Pacman porphyrin using O2 and visible light. J. Am. Chem. Soc. 2006, 128, 6546–6547.10.1021/ja058731sSearch in Google Scholar
Rossi, G.; Gardini, M.; Pennesi, C.; Ercolani, C.; Goedken, V. Ruthenium phthalocyanine chemistry: synthesis and properties of a mixed-valence nitrido-bridged ruthenium phthalocyanine dimer. J. Chem. Soc. Dalton Trans. 1989, 193–195.10.1039/dt9890000193Search in Google Scholar
Safari, N.; Bahadoran, F. Cytochrome P-450 model reactions: a kinetic study of epoxidation of alkenes by iron phthalocyanine J. Mol. Catal. A 2001, 171, 115–121.10.1016/S1381-1169(01)00077-2Search in Google Scholar
Schmidt, T.; Hartung, W.; Wasgestian, F. Homogeneous catalysis by tetra-t-butylphthalocyanine iron: intermediates in the oxidative dimerization of 2,6-di-t-butylphenol. Inorg. Chim. Acta 1998, 274, 126–129.10.1016/S0020-1693(97)06046-5Search in Google Scholar
Sehlotho, N.; Nyokong, T. Catalytic activity of iron and cobalt phthalocyanine complexes towards the oxidation of cyclohexene using tert-butylhydroperoxide and chloroperoxybenzoic acid. J. Mol. Catal. A 2004, 209, 51–57.10.1016/j.molcata.2003.08.014Search in Google Scholar
Silaghi-Dumitrescu, R.; Makarov, S. V.; Uta, M.-M.; Dereven’kov, I. A.; Stuzhin, P. A. Redox non-innocence of a nitride bridge in a methane-activating dimer of iron phthalocyanine. New J. Chem. 2011, 35, 1140–1145.10.1039/c0nj00827cSearch in Google Scholar
Sorokin, A. B.; Kudrik, E. V. Phthalocyanine metal complexes: versatile catalysts for selective oxidation and bleaching. Catal. Today 2011, 159, 37–46.10.1016/j.cattod.2010.06.020Search in Google Scholar
Sorokin, A.; Meunier, B. Oxidative degradation of polychlorinated phenols catalyzed by metallophthalocyanines. Chem. Eur. J. 1996, 2, 1308–1317.10.1002/chem.19960021019Search in Google Scholar
Sorokin, A. B.; Tuel, A. Heterogeneous oxidation of aromatic compounds catalyzed by metallophthalocyanine functionalized silicas. New J. Chem. 1999, 23, 473–476.10.1039/a901689iSearch in Google Scholar
Sorokin, A. B.; Tuel, A. Metallophthalocyanine functionalized silicas: catalysts for the selective oxidation of aromatic compounds. Catal. Today 2000, 57, 45–59.10.1016/S0920-5861(99)00312-0Search in Google Scholar
Sorokin, A.; Robert, A.; Meunier, B. Intramolecular kinetic isotope effects in alkane hydroxylations catalyzed by manganese and iron porphyrin complexes. J. Am. Chem. Soc. 1993, 115, 7293–7299.10.1021/ja00069a031Search in Google Scholar
Sorokin, A.; Séris, J.-L.; Meunier, B. Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron phthalocyanines. Science 1995, 268, 1163–1166.10.1126/science.268.5214.1163Search in Google Scholar
Sorokin, A.; Fraisse, L.; Rabion, A.; Meunier, B. Metallophthalocyanine-catalyzed oxidation of catechols by H2O2 and its surrogates. J. Mol. Catal. A 1997, 117, 103–114.10.1016/S1381-1169(96)00415-3Search in Google Scholar
Sorokin, A. B.; Buisson, P.; Pierre, A. C. Encapsulation of iron phthalocyanine in sol-gel materials. Micropor. Mesopor. Mater. 2001, 46, 87–98.10.1016/S1387-1811(01)00294-3Search in Google Scholar
Sorokin, A. B.; Mangematin, S.; Pergrale, C. Selective oxidation of aromatic compounds with dioxygen and peroxides catalyzed by phthalocyanine supported catalysts. J. Mol. Catal. A 2002, 182–183, 267–281.10.1016/S1381-1169(01)00486-1Search in Google Scholar
Sorokin, A. B.; Quignard, F.; Valentin, R.; Mangematin, S. Chitosan supported phthalocyanine complexes: bifunctional catalysts with basic and oxidation active sites. Appl. Catal. A 2006, 309, 162–168.10.1016/j.apcata.2006.03.060Search in Google Scholar
Sorokin, A. B.; Kudrik, E. V.; Bouchu, D. Bio-inspired oxidation of methane in water catalyzed by N-bridged diiron phthalocyanine complex. Chem. Commun. 2008, 2562–2544.10.1039/b804405hSearch in Google Scholar PubMed
Sorokin, A. B.; Kudrik, E. V.; Alvarez, L. X.; Afanasiev, P.; Millet, J. M. M.; Bouchu, D. Oxidation of methane and ethylene in water at ambient conditions. Catal. Today 2010, 157, 149–154.10.1016/j.cattod.2010.02.007Search in Google Scholar
Stuzhin, P. A.; Latos-Gra(y∏ski, L.; Jezierski, A. Synthesis and properties of binuclear nitride-bridged iron octaphenyltetraazaporphyrin. EPR studies of dioxygen adduct formation. Transition Met. Chem. 1989, 14, 341–346.10.1007/BF01032506Search in Google Scholar
Stuzhin, P. A.; Hamdush, M.; Homborg H. Formation of heterobinuclear μ-nitrido complexes with a Mn-N-Fe moiety by reaction of nitrido(octaphenyltetraazaporphyrinato)manganese(V) with iron(III) porphyrins. Mendeleev Commun. 1997, 7, 196–198.10.1070/MC1997v007n05ABEH000819Search in Google Scholar
Summerville D. A.; Cohen I. A. J. Am. Chem. Soc. Metal-metal interactions involving metalloporphyrins. III. Conversion of tetraphenylporphinatoiron(III) azide to an N-bridged hemin dimer. 1976, 98, 1747–1752.10.1021/ja00423a019Search in Google Scholar
Theodoridis, A.; Maigut, J.; Puchta, R.; Kudrik E.; van Eldik, R. Novel iron(III) porphyrazine complex. Complex speciation and reactions with NO and H2O2. Inorg. Chem. 2008, 47, 2994–3013.10.1021/ic702041gSearch in Google Scholar
Thibon, A.; Jollet, V.; Ribal, C.; Sénéchal-David, K.; Billon, L.; Sorokin, A. B.; Banse, F. Hydroxylation of aromatics with the help of a non-haem FeOOH: a mechanistic study under single-turnover and catalytic conditions. Chem. Eur. J. 2012, 18, 2715–2724.10.1002/chem.201102252Search in Google Scholar
Tiago de Oliveira, F.; Chanda, A.; Banerjee, D.; Shan, X.; Mondal, S.; Que, L., Jr.; Bominaar, E. L.; Münck, E.; Collins, T. J. Chemical and spectroscopic evidence for an FeV–oxo complex. Science 2007, 315, 835–838.10.1126/science.1133417Search in Google Scholar
Tinberg, C. E.; Lippard, S. J. Dioxygen activation in soluble methane monooxygenase. Acc. Chem. Res. 2011, 44, 280–288.10.1021/ar1001473Search in Google Scholar
Tshuva, E. Y.; Lippard, S. J. Synthetic models for non-heme carboxylate-bridged diiron metalloproteins: strategies and tactics. Chem. Rev. 2004, 104, 987–1012.10.1021/cr020622ySearch in Google Scholar
Vanover, E.; Huang, Y.; Xu, L.; Newcomb, M.; Zhang, R. Photocatalytic aerobic oxidation by a bis-porphyrin-ruthenium(IV) μ-oxo dimer: observation of a putative porphyrin-ruthenium(V)-oxo intermediate. Org. Lett. 2010, 12, 2246–2249.10.1021/ol1005938Search in Google Scholar
Vincent, J. M.; Ménage, S.; Lambeaux, C.; Fontecave, M. Oxidation of alkanes catalyzed by binuclear metal complexes: control by the coordination sphere. Tetrahedron Lett. 1994, 35, 6287–6290.10.1016/S0040-4039(00)73413-7Search in Google Scholar
Wagner, W.-D.; Nakamoto, J. Resonance Raman spectra of nitridoiron(V) porphyrin intermediates produced by laser photolysis. J. Am. Chem. Soc. 1989, 111, 1590–1598.10.1021/ja00187a010Search in Google Scholar
Wasser, I. M.; Fry, H. C.; Hoertz, P. G.; Meyer, G. J.; Karlin, K. D. Photochemical organic oxidations and dechlorinations with a μ-oxo bridged heme/non-heme diiron complex. Inorg. Chem. 2004, 43, 8272–8281.10.1021/ic0490932Search in Google Scholar
Woitiski, C. B.; Kozlov, Y. N.; Mandelli, D.; Nizova, G. V.; Schuchardt, U.; Shul’pin, G. B. Oxidations by the system “hydrogen peroxide-dinuclear manganese(IV) complex-carboxylic acid” – part 5. Epoxidation of olefins including natural terpenes. J. Mol. Catal. A 2004, 222, 103–119.10.1016/S1381-1169(04)00503-5Search in Google Scholar
Xu, N.; Campbell, A. L. O.; Powell, D. R.; Khandogin, J.; Richter-Addo, G. B. A stable hyponitrite-bridged iron porphyrin complex. J. Am. Chem. Soc. 2009, 131, 2460–2461.10.1021/ja809781rSearch in Google Scholar
Xue, G.; Wang, D.; De Hont, R.; Fiedler, A. T.; Shan, X.; Münck, E.; Que, L., Jr. A synthetic precedent for the [FeIV2(μ-O)2] diamond core proposed for methane monooxygenase intermediate Q. Proc. Natl. Acad. Sci. USA. 2007, 104, 20713–20718.10.1073/pnas.0708516105Search in Google Scholar
Xue, G.; De Hont, R.; Münck, E.; Que, L., Jr. Million-fold activation of the [Fe2(μ-O)2] diamond core for C-H bond cleavage. Nat. Chem. 2010, 2, 400–405.10.1038/nchem.586Search in Google Scholar
Xue, G.; Pokutsa, A.; Que, L., Jr. Substrate-triggered activation of a synthetic [Fe2(μ-O)2] diamond core for C-H bond cleavage. J. Am. Chem. Soc. 2011, 133, 16657–16667.10.1021/ja207131gSearch in Google Scholar
Yeung, H.-L.; Sham, K.-C.; Tsang, C.-S.; Lau, T. C.; Kwong, H. L. A chiral iron-sexipyridine complex as a catalyst for alkene epoxidation with hydrogen peroxide. Chem. Commun. 2008, 3801–3803.10.1039/b804281kSearch in Google Scholar PubMed
Zagal, J. H.; Griveau, S.; Silva, J. F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 2010, 254, 2755–2791.10.1016/j.ccr.2010.05.001Search in Google Scholar
Zalomaeva, O. V.; Sorokin, A. B. Access to functionalized quinones via the aromatic oxidation of phenols bearing an alcohol or olefinic function catalyzed by supported iron phthalocyanine. New J. Chem. 2006, 30, 1768–1773.10.1039/b608834aSearch in Google Scholar
Zalomaeva, O. V.; Kholdeeva, O. A.; Sorokin, A. B. Preparation of 2-methyl-1,4-naphthoquinone (vitamin K3) by catalytic oxidation of 2-methyl-1-naphthol in the presence of iron phthalocyanine supported catalyst. C. R. Chimie 2007, 10, 598–603.10.1016/j.crci.2007.02.001Search in Google Scholar
Zalomaeva, O. V.; Ivanchikova, I. D.; Kholdeeva, O. A.; Sorokin, A. B. Kinetics and mechanism of the oxidation of alkyl substituted phenols and naphthols with BuOOH in the presence of supported iron phthalocyanine. New J. Chem. 2009, 33, 1031–1037.10.1039/b821534kSearch in Google Scholar
Zalomaeva, O. V.; Sorokin, A. B.; Kholdeeva O. A. Clean catalytic oxidation of 8-hydroxyquinoline to quinoline-5,8-dione with tBuOOH in the presence of covalently bound FePcS-SiO2 catalysts. Green Chem. 2010, 12, 1076–1082.10.1039/b923674kSearch in Google Scholar
Zhang, R.; Newcomb, M. Laser flash photolysis generation of high-valent transition metal-oxo species: insights from kinetic studies in real time. Acc. Chem. Res. 2008, 41, 468–477.10.1021/ar700175kSearch in Google Scholar
Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Reetz, M. T. Tuning a P450 enzyme for methane oxidation. Angew. Chem. Int. Ed. 2011, 50, 2720–2724.10.1002/anie.201006587Search in Google Scholar
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Masthead
- Masthead
- Review
- Rates of protonation of thiolate and sulfide ligands in mononuclear complexes and Fe-S-based clusters: implications for metalloenzymes
- Fluorine chemistry meets liquid ammonia
- Metal-oxo-mediated O-O bond formation reactions in chemistry and biology
- Diiron complexes on macrocyclic porphyrin-like platform as oxidation catalysts: reactivity and mechanistic considerations
Articles in the same Issue
- Masthead
- Masthead
- Review
- Rates of protonation of thiolate and sulfide ligands in mononuclear complexes and Fe-S-based clusters: implications for metalloenzymes
- Fluorine chemistry meets liquid ammonia
- Metal-oxo-mediated O-O bond formation reactions in chemistry and biology
- Diiron complexes on macrocyclic porphyrin-like platform as oxidation catalysts: reactivity and mechanistic considerations