Home Rates of protonation of thiolate and sulfide ligands in mononuclear complexes and Fe-S-based clusters: implications for metalloenzymes
Article
Licensed
Unlicensed Requires Authentication

Rates of protonation of thiolate and sulfide ligands in mononuclear complexes and Fe-S-based clusters: implications for metalloenzymes

  • Richard A. Henderson EMAIL logo
Published/Copyright: July 1, 2012
Become an author with De Gruyter Brill

Sulfur-based ligands, principally cysteinate, methionine and sulfide, are found in many metallo­enzymes. As these enzymes operate in a protic environment and (in some cases) involve substrates being transformed by sequences of electron and proton transfer reactions, it is important to understand the protonation chemistry of these sulfur-based ligands. In this review, the mechanisms and proton transfer rates of both coordinated thiolates and sulfides are presented, with a particular emphasis on synthetic Fe-S-based clusters. The protonation of natural Fe-S-based clusters is considered in the light of the studies on the synthetic models.


Corresponding author: Richard A. Henderson, School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

References

Algarra, A. G.; Basallote, M. G.; Feliz, M.; Fernandez-Trujillo, M. J.; Llusar, R.; Safont, V. S. New insights into the mechanism of proton transfer to hydride complexes: kinetic and theoretical evidence showing the existence of competitive pathways for protonation of the cluster [W3S4H3(dmpe)3]+ with acids. Chem. Eur. J. 2006, 12, 1413–1426.Search in Google Scholar

Algarra, A. G.; Basallote, M. G.; Feliz, M.; Fernandez-Trujillo, M. J.; Llusar, R.; Safont, V. S. The role of solvent on the mechanism of proton transfer to hydride complexes: the case of the [W3PdS4H3(dmpe)3(CO)]+ cubane cluster. Chem. Eur. J. 2010, 16, 1613–1623.Search in Google Scholar

Allan, C. B.; Davidson, G.; Choudhury, S. B.; Gu, Z.; Bose, K.; Day, R. O.; Maroney, M. J. Protonation and alkylation of a dinuclear nickel thiolate complex. Inorg. Chem. 1998, 37, 4166–4167.Search in Google Scholar

Almeida, V. R.; Gormal, C. A.; Grönberg, K. L. C.; Henderson, R. A.; Oglieve, K. E.; Smith, B. E. Protonation and substitution reactions of Fe-S ‘basket’ clusters including extracted FeMo-cofactor of nitrogenase. Inorg. Chim. Acta 1999, 291, 212–225.Search in Google Scholar

Aullon, G.; Capdevila, M.; Clegg, W.; Gonzalez-Duarte, P.; Lledos, A.; Mas-Balleste, R. First evidence of fast SH…S proton transfer in a transition metal complex. Angew. Chem. Int. Ed. 2002, 41, 2776–2778.Search in Google Scholar

Autissier, V.; Henderson, R. A. Mechanism of single metal exchange in the reactions of [M4(SPh)10]2- (M=Zn or Fe) with CoX2 (X=Cl or NO3) or FeCl2. Inorg. Chem. 2008, 47, 6393–6403.Search in Google Scholar

Autissier, V.; Clegg, W.; Harrington, R. W.; Henderson, R. A. Proton transfer to nickel-thiolate complexes. 1. Protonation of [Ni(SC6H4R-4)2(Ph2PCH2CH2PPh2)] (R=Me, MeO, H, Cl, or NO2). Inorg. Chem. 2004a, 43, 3098–3105.Search in Google Scholar

Autissier, V.; Zarza, P. M.; Petrou, A.; Henderson, R. A.; Harrington, R. W.; Clegg, W. Proton transfer to nickel-thiolate complexes. 2. Rate-limiting intramolecular proton transfer in the reactions of [Ni(SC6H4R-4)(PhP{CH2CH2PPh2}2)]+ (R=NO2, Cl, H, Me, or MeO). Inorg. Chem. 2004b, 43, 3106–3114.Search in Google Scholar

Backes, G.; Mino, Y.; Loehr, T. M.; Meyer, T. E.; Cusanovich, M. A.; Sweeney, W. V.; Adman, E. T.; Sanders-Loehr, J. The environment of Fe4S4 clusters in ferredoxins and high-potential iron proteins. New information from X-ray crystallography and resonance Raman spectroscopy. J. Am. Chem. Soc. 1991, 113, 2055–2064.Search in Google Scholar

Bates, K.; Henderson, R. A. Binding nucleophiles to [Fe4Y4Cl4]2- (Y=S or Se) can increase or suppress the rate of proton transfer to the cluster. Inorg. Chem. 2008, 47, 5850–5858.Search in Google Scholar

Bates, K.; Johnson, L.; Henderson, R. A. Mechanism of the reactions of synthetic Fe-S-based clusters with PhCOCl: parallel pathways involving free and coordinated thiolate as nucleophiles. Inorg. Chem. 2006, 45, 9423–9433.Search in Google Scholar

Bates, K.; Garrett B.; Henderson, R. A. Rates of proton transfer to Fe-S-based clusters: comparison of clusters containing {MFe(μ2-S)2}n+ and {MFe33-S)4}n+ (M=Fe, Mo or W) cores. Inorg. Chem. 2007, 46, 11145–11155.Search in Google Scholar

Bates, K.; Wouldhave, M.; Henderson, R. A. Involvement of thiolate ligands in binding substrates to Fe-S clusters. Dalton Trans. 2008, 6527–6529.10.1039/b817353mSearch in Google Scholar PubMed

Beinert, H.; Kennedy M. C.; Stout, C. D. Aconitase as iron-sulfur protein, enzyme, and iron-regulatory protein. Chem. Rev. 1996, 96, 2335–2374.Search in Google Scholar

Belkova, N. V.; Besora, M.; Baya, M.; Dub, P. A.; Epstein, L. M.; Lleds, A.; Poli, R.;. Revin, P. O.; Shubina, E. S. Effect of the nature of the metal atom on hydrogen bonding and proton transfer to [Cp*MH3(dppe)]: tungsten versus molybdenum. Chem. Eur. J. 2008, 14, 9921–9934.Search in Google Scholar

Bell, R. P. The Proton in Chemistry; 2nd Edition. Chapman and Hall: London, 1973.10.1007/978-1-4757-1592-7Search in Google Scholar

Bell, J.; Dunford, A. J.; Hollis, E.; Henderson, R. A. The role of Mo atoms in nitrogen fixation: balancing substrate reduction and dihydrogen production. Angew. Chem. Int. Ed. 2003, 42, 1149–1152.Search in Google Scholar

Bernasconi, C. F.; Montañez, R. L. Kinetics of proton transfer from benzoylnitromethane and 1,2-diphenyl-2-nitroethanone to various bases. Resonance, inductive, solvation, steric, and transition state hydrogen-bonding effects on intrinsic rate constants. J. Org. Chem. 1997, 62, 8162–8170.Search in Google Scholar

Bernasconi, C. F.; Wiersema, D. M.; Stronach, W. Deprotonation of arylnitromethanes. Higher intrinsic rate constants with thiolate ions than with oxyanions or amines as the proton acceptors. Hydrogen bonding in the transition state and desolvation of the base as competing factors in proton transfer at carbon. J. Org. Chem. 1993, 58, 217–223.Search in Google Scholar

Bertini, I.; Ciurli, S.; Luchinat, C. The electronic structure of FeS centres in proteins and models. A contribution to the understanding of their electron transfer properties. Struct. Bonding 1995, 83, 1–53.Search in Google Scholar

Burgess, B.; Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 1996, 96, 2983–3012.Search in Google Scholar

Coucouvanis, D. Functional analogs for the reduction of certain nitrogenase substrates. Are multiple sites within the Fe/Mo/S active center involved in the 6e- reduction of N2? J. Biol. Inorg. Chem. 1996, 1, 594–600.Search in Google Scholar

Cui, Z.; Henderson, R. A. Mechanistic studies on the reactions of PhS- or [MoS4]2- with [M4(SPh)10]2- (M=Fe or Co). Inorg. Chem. 2002, 41, 4158–4166.Search in Google Scholar

Cui, Z.; Henderson, R. A. Kinetics of the reactions between [(RS)2Fe(μ-S)2M(μ-S)2Fe(SR)2]n- (M=Mo, R=Ph, n=2; M=V, R=Et, n=3) and [Fe(SR)4]2-: key steps in the assembly of cuboidal Fe-S-based clusters. Trans. Met. Chem. 2006, 31, 530–540.Search in Google Scholar

Dahlenburg, L.; Kühnlein, M. Rhodium and iridium complexes derived from trans-[MCl(CO)(PPh3)2] (M=Rh, Ir) and pyridine-2-thiolate or 4,6-dimethylpyrimidine-2-thiolate ligands: S-monodentate coordination versus S,N-chelation and S,N-bridging; reactivity of trans-[Ir(‘Spy’)(CO)(PPh3)2] and trans-[Ir(‘SpymMe2’)(CO)(PPh3)2] towards acid. Eur. J. Inorg. Chem. 2000, 9, 2117–2126.Search in Google Scholar

Dance, I. The chemical mechanism of nitrogenase: calculated details of the intramolecular mechanism for hydrogenation of η2-N2 on FeMo-co to NH3. Dalton Trans. 2008, 5977–5991.10.1039/b806100aSearch in Google Scholar PubMed

Dance, I. Mimicking nitrogenase. Dalton Trans. 2010, 39, 2972–2983.Search in Google Scholar

Dance, I. Ramifications of C-centering rather than N-centering of the active site FeMo-co of the enzyme nitrogenase. Dalton Trans. 2012, 41, 4859–4865.Search in Google Scholar

Davies, S. C.; Evans, D. J.; Henderson, R. A.; Hughes, D. L.; Longhurst, S. Proton affinities of [Fe4S4{SCH2CH(OH)Me}4]2- in methanol: relevance to hydrogen bonding of Fe-S clusters in proteins. J. Chem. Soc. Dalton Trans. 2001, 3470–3477.Search in Google Scholar

Demadis, K. D.; Malinak, S. M.; Coucouvanis, D. Catalytic reduction of hydrazine to ammonia with MoFe3S4-polycarboxylate clusters. Possible relevance regarding the function of the molybdenum-coordinated homocitrate in nitrogenase. Inorg. Chem. 1996, 35, 4038–4046.Search in Google Scholar

Do, V.; Simhon, E. D.; Holm, R. H. Tetrathiovanadate(V) and tetrathiorhenate(VII): structures and reactions, including characterization of the VFe2S4 core unit. Inorg. Chem. 1985, 24, 4635–4642.Search in Google Scholar

Dos Santos, P. C.; Dean, D. R.; Hu, Y.; Ribbe, M. W. Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem. Rev. 2004, 104, 1159–1173.Search in Google Scholar

Dukes, G. R.; Holm, R. H. Synthetic analogs of the active sites of iron-sulfur proteins. X. Kinetics and mechanism of the ligand substitution reactions of arylthiols with the tetranuclear clusters [Fe4S4(SR)4I2-. J. Am. Chem. Soc. 1975, 97, 528–533.Search in Google Scholar

Dunford, A. J.; Henderson, R. A. Ligand movement modulates the rate of proton transfer in reactions of [Fe4S4Cl4]2-. Chem. Commun. 2002a, 360–361.Search in Google Scholar

Dunford, A. J.; Henderson, R. A. The rates of binding protons and substrates to [Fe4S4Cl4]2-. J. Chem. Soc. Dalton Trans. 2002b, 2837–2842.Search in Google Scholar

Dunford, A. J.; Henderson, R. A. Kinetics and mechanism of the acid-catalysed substitution reactions of [Fe6S9(SEt)2]4-. J. Coord. Chem. 2010, 63, 2507–2516.Search in Google Scholar

Eady, R. R. Structure-function relationships of alternative nitrogenases. Chem. Rev. 1996, 96, 3013–3030.Search in Google Scholar

Eigen, M. Proton transfer, acid-base catalysis and enzymatic hydrolysis. Angew. Chem. Int. Ed. 1964, 3, 1–72.Search in Google Scholar

Garrett, B.; Henderson, R. A. Kinetics and mechanism of the reactions of [FeCl4]- with PhS- or PhSH in MeCN, and the role of cations containing N-H groups. J. Chem. Soc. Dalton Trans. 2005, 2395–2402.10.1039/b503501eSearch in Google Scholar PubMed

Garrett, B.; Henderson, R. A. Protonation and substitution reactions of [{WFe3S4Cl3}2(μ-L)3]3- (L=SEt or OMe): quantifying how metal content and spectator ligands individually affect reactivity. Dalton Trans. 2010, 39, 4586–4593.Search in Google Scholar

Geary, W. J. Use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122.Search in Google Scholar

Grönberg, K. L. C.; Henderson, R. A. Characteristics of acid-catalysed substitution mechanisms and sites of protonation in iron-sulfur-based clusters, as revealed by studies on [Cl2FeS2VS2FeCl2]3-. J. Chem. Soc. Dalton Trans. 1996, 3667–3675.10.1039/DT9960003667Search in Google Scholar

Grönberg, K. L. C.; Henderson R. A.; Oglieve, K. E. A Unified mechanism for the stoichiometric reduction of H+ and C2H2 by [Fe4S4(SPh)4]3- in MeCN. J. Chem. Soc. Dalton Trans. 1998, 3093–3104.10.1039/a803223hSearch in Google Scholar

Hagen, K. S.; Reynolds, J. G.; Holm, R. H. Definition of reaction sequences resulting in self-assembly of [Fe4S4(SR)4]2- clusters from simple reactants. J. Am. Chem. Soc. 1981, 103, 4054–4063.Search in Google Scholar

Henderson, R. A. Proton transfer to synthetic Fe-S-based clusters. Coord. Chem. Rev. 2005a, 249, 1841–1856.Search in Google Scholar

Henderson, R. A. Mechanistic studies on synthetic Fe-S-based clusters and their relevance to the action of nitrogenases. Chem. Rev. 2005b, 105, 2365–2438.Search in Google Scholar

Henderson, R. A.; Oglieve, K. E. Mechanism of the acid-catalysed substitution of [Fe4S4(SR)4]n- (R=Ph, n=2 or 3; R=Et or But, n=2), and transient binding of small molecules at [Fe4S4(SEt)4]2-. J. Chem. Soc. Dalton Trans. 1993a, 1467–1472.Search in Google Scholar

Henderson, R. A.; Oglieve, K. E. Kinetic studies on [{MFe3S4(SR)3}2(μ-SR)3]3- (M=Mo or W, R=Et or Ph): influence of Mo or W on the mechanism of substitution at the iron centres within the cluster. J. Chem. Soc. Dalton Trans. 1993b, 1473–1476.Search in Google Scholar

Henderson, R. A.; Oglieve, K. E. Protonation of the iron-sulfur core in [Fe4S4X4]2- (X=Cl or Br): chemical precedent for the elementary reaction of the hydrogenases and nitrogenases. J. Chem. Soc. Chem. Commun. 1994, 377–379.10.1039/C39940000377Search in Google Scholar

Henderson, R. A.; Oglieve, K. E. Single protonation labilises but double protonation inhibits substitution of [Fe4S4Cl4]2-. J. Chem. Soc. Dalton Trans. 1998, 1731–1733.10.1039/a802303dSearch in Google Scholar

Henderson, R. A.; Oglieve, K. E. Enforced slow protonation of [Fe4S4Cl4]2- and the maximum rate of protonation of the cluster core. J. Chem. Soc. Dalton Trans. 1999, 3927–3934.10.1039/a906821jSearch in Google Scholar

Henderson, R. A.; Hughes, D. L.; Richards, R. L.; Shortman, C. The preparation, structure and reactions of the mononuclear thiolate-hydride complexes [MoH(SR)(dppe)2] (R=bulky alkyl or aryl group, dppe=Ph2PCH2CH2PPh2); X-ray structure determination of cis-[MoH(SC6H2Pri3-2,4,6)(dppe)2]. J. Chem. Soc. Dalton Trans. 1987, 1115–1121.10.1039/DT9870001115Search in Google Scholar

Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation. Acc. Chem. Res. 2009, 42, 609–619.Search in Google Scholar

Holm, R. H.; Kennepohl, P.; Solomon, E. I. Structural and functional aspects of metal sites in biology. Chem. Rev. 1996, 96, 2239–2314.Search in Google Scholar

Howard, J. B.; Rees, D. C. Structural basis of nitrogen fixation. Chem. Rev. 1996, 96, 2965–2982.Search in Google Scholar

Hozumi, Y.; Imasaka, Y.; Tanaka, K.; Tanaka, T. Catalytic reduction of hydrazine to ammonia by the reduced species of [Mo2Fe6S8L9]3- and [Fe4S4L4]2- (L=phenylthio or 2-hydroxyethylthio). Chem. Lett. 1983, 897–900.10.1246/cl.1983.897Search in Google Scholar

Izutsu, K. Acid-Base Dissociation Constants in Dipolar Aprotic Solvents; Blackwell Scientific: Oxford, UK, 1990.Search in Google Scholar

Jessop, P. G.; Morris, R. H. H/D exchange reactions of an iridium ditbiol complex. Inorg. Chem. 1993, 32, 2236–2237.Search in Google Scholar

Job, R. C.; Bruice, T. C. Iron-sulfur clusters. II. Kinetics of ligand exchange studied on a water-soluble [Fe4S4(SR)4] cluster. Proc. Natl. Acad. Sci. 1975, 72, 2478–2482.Search in Google Scholar

Karty, J. M.; Wu, Y.; Brauman, J. I. The RS-.HSR hydrogen bond: acidities of α, ω-dithiols and electron affinities of their monoradicals. J. Am. Chem. Soc. 2001, 123, 9800–9805.Search in Google Scholar

Laughlin, L. J.; Coucouvanis, D. Use of [MoFe3S4I3+ single cubanes in the catalytic reduction of acetylene to ethylene and ethane. Identification of molybdenum and iron atoms as catalytic sites during substrate reduction and implications for nitrogenase action. J. Am. Chem. Soc. 1995, 117, 3118–3125.Search in Google Scholar

Lee, S. C.; Holm, R. H. The clusters of nitrogenase: synthetic methodology in the construction of weak-field clusters. Chem. Rev. 2004, 104, 1135–1157.Search in Google Scholar

Malinak, S. M.; Demadis, K. D.; Coucouvanis, D. Catalytic reduction of hydrazine to ammonia by the VFe3S4 cubanes. Further evidence for the direct involvement of the heterometal in the reduction of nitrogenase substrates and possible relevance to the vanadium nitrogenases. J. Am. Chem. Soc. 1995, 117, 3126–3133.Search in Google Scholar

Malinak, S. M.; Simeonov, A. M.; Mosier, P. E.; McKenna, C. E.; Coucouvanis, D. Catalytic reduction of cis-dimethyldiazene by the [MoFe3S4]3+ clusters. The four-electron reduction of a N=N bond by a nitrogenase-relevant cluster and implications for the function of nitrogenase. J. Am. Chem. Soc. 1997, 119, 1662–1667.Search in Google Scholar

McMillan, R. S.; Renauld, J.; Reynolds, J. G.; Holm, R. H. Biologically related iron-sulfur clusters as reaction centers. Reduction of acetylene to ethylene in systems based on [Fe4S4(SR)4]3-. J. Inorg. Biochem. 1979, 11, 213–227.Search in Google Scholar

Noodleman, L.; Pique, M. E.; Roberts, V. A. Iron-sulfur clusters: properties and functions. Wiley Encycl. Chem. Biol. 2009, 2, 458–468.Search in Google Scholar

Petrou, A. L.; Koutselos, A. D.; Wahab, H. S.; Clegg, W.; Harrington R. W.; Henderson, R. A. Kinetic and theoretical studies on the protonation of [Ni(2-SC6H4N){PhP(CH2CH2PPh2)2}]+: nitrogen versus sulfur as the protonation site. Inorg. Chem. 2011, 50, 847–857.Search in Google Scholar

Reynolds, J. G.; Coyle, C. L.; Holm, R. H. Electron exchange kinetics of [Fe4S4(SR)4I2-/[Fe4S4(SR)4I3- and [Fe4Se4(SR)4I2-/[Fe4Se4(SR)4I3- systems. Estimates of the intrinsic self-exchange rate constant of 4-Fe sites in oxidized and reduced ferredoxins. J. Am. Chem. Soc. 1980, 102, 4350–4355.Search in Google Scholar

Richens, D. T. The Chemistry of Aqua Ions; Chapter 6; John Wiley & Sons: Chichester, UK, 1997.Search in Google Scholar

Sellmann, D.; Sutter, J. In quest of competitive catalysts for nitrogenases and other metal sulfur enzymes. Acc. Chem. Res. 1997, 30, 460–469.Search in Google Scholar

Sellmann, D.; Lechner, P.; Knoch, F.; Moll, M. Transition-metal complexes with sulfur ligands. 82. H2S, S2, and CS2 molecules as ligands in sulfur-rich [Ru(PPh3)‘S4’] complexes (‘S42-=1,2-bis[(2-mercaptophenyl)thio]ethane(2-)). J. Am. Chem. Soc. 1992, 114, 922–930.Search in Google Scholar

Sellmann, D.; Koppler, J.; Moll, M. Transition metal complexes with sulfur ligands. 96. Hydrogenase model reactions: D2/H+ exchange at metal sulfur centers catalyzed by [Rh(H)(CO)(‘buS’ (‘buS2-=1,2-bis((2-mercapto-3,5-di-tert-butylphenyl)thio)ethanato(2-)). J. Am. Chem. Soc. 1993, 115, 1830–1835.Search in Google Scholar

Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 2011, 334, 940.10.1126/science.1214025Search in Google Scholar PubMed PubMed Central

Stephens, P. J.; Jollie, D. R.; Warshel, A. Protein control of redox potentials of iron-sulfur proteins. Chem. Rev. 1996, 96, 2491–2513.Search in Google Scholar

Thorneley, R. N. F.; Lowe, D. J. Kinetics and Mechanism of the Nitrogenase Enzyme System. In Metal Ions in Biology (Molybdenum Enzymes). Spiro, T. G. Ed. Wiley: New York, 1985; Vol. 7, pp. 221–284.Search in Google Scholar

Tobe, M. L. Base hydrolysis of transition metal complexes. Adv. Inorg. Bioinorg. Chem. 1983, 2, 1–94.Search in Google Scholar

Venkateswara, P.; Holm, R. H. Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 2004, 104, 527–559.Search in Google Scholar

Wender, S. A.; Reibenspies, J. H.; Kim J. S.; Darensbourg, M. Y. Synthesis and characterization of a stable iron(II) hydride-thiolate complex: [(PhS)Fe(H)(CO)2(P(OPh)3)2]. Inorg. Chem. 1994, 33, 1421–1426.Search in Google Scholar

Westcott, B. L.; Gruhn, N. E.; Enemark, J. H. Evaluation of molybdenum-sulfur interactions in molybdoenzyme model complexes by gas-phase photoelectron spectroscopy. The “electronic buffer” effect. J. Am. Chem. Soc. 1998, 120, 3382–3386.Search in Google Scholar

Received: 2012-2-23
Accepted: 2012-5-13
Published Online: 2012-07-01
Published in Print: 2012-07-01

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/irm-2012-0001/html
Scroll to top button