Chemistry of metal and non-metal fluorides in liquid ammonia is often severely hampered, due to the low solubility of inorganic fluorides. This can be overcome by applying either strongly oxidizing fluorides, appropriate fluoride ion acceptors, or by the reduction or conversion of fluorides using solvated electrons. The article summarizes the state-of-the-art of the chemistry of inorganic fluorides in liquid ammonia, with special emphasis on compounds of beryllium, silver and uranium.
References
Ahrland, S.; Larsson, R. The complexity of uranyl fluoride. Acta Chem. Scand. 1954, 8, 354–366.Search in Google Scholar
Ahrland, S.; Larsson, R.; Rosengren, K. On the complex chemistry of the uranyl ion VIII. The complexity of uranyl fluoride. Acta Chem. Scand. 1956, 10, 705–718.Search in Google Scholar
Andersson, S. Magnesium nitride fluorides. J. Solid State Chem. 1970, 1, 306–309.Search in Google Scholar
Andrews, L.; Wang, X.; Lindh, R.; Roos, B. O.; Marsden, C. J. Simple NUF3 and PUF3 molecules with triple bonds to uranium. Angew. Chem. 2008, 120, 5446–5450.Search in Google Scholar
Baer, S. A.; Kraus, F. Cesium fluoride ammonia (3/4) [Cs3F3(NH3)4] and ammonium cesium difluoride [NH4CsF2]. Z. Naturforsch. 2010, 65b, 1177–1184.Search in Google Scholar
Baldas, J.; Boas, J. F.; Ivanov, Z. E.p.r. evidence for the formation of the six-coordinate pentafluoronitridotechnetate(VI) anion in solution. Transition Met. Chem. 1997, 22, 74–78.Search in Google Scholar
Bart, S. C.; Meyer, K. Highlights in Uranium Coordination Chemistry. In Structure and Bonding 127: Organometallic and Coordination Chemistry of the Actinides; Springer-Verlag: Berlin, Heidelberg, 2008, pp. 119–176.10.1007/430_2007_081Search in Google Scholar
Bergstrom, F. W. The action of liquid ammonia solutions of ammonia salts on metallic beryllium. Ammonated beryllium halides and ammonobasic beryllium salts. J. Am. Chem. Soc. 1928, 50, 657–662.Search in Google Scholar
Berthet, J.-C.; Thuéry, P.; Ephritikhine, M. Polyimido clusters of neodymium and uranium, including a cluster with an M6(μ3-N)8 core. Eur. J. Inorg. Chem. 2008, 5455–5459.10.1002/ejic.200800947Search in Google Scholar
Berthold, H. J.; Delliehausen, C. Darstellung und röntgenographische Untersuchung höherer Urannitride. Angew. Chem. 1966a, 78, 750–751.Search in Google Scholar
Berthold, H. J.; Delliehausen, C. siehe 1067. Angew. Chem. Int. Ed. 1966b, 5, 726.Search in Google Scholar
Berthold, H. J.; Hein, H. G. Über die hochtemperaturammonolyse von UF4. Angew. Chem. 1969, 81, 910.Search in Google Scholar
Berthold, H. J.; Knecht, H. Ammoniates of uranium trichloride and tetrachloride. Angew. Chem. Int. Ed. 1965a, 4, 431–432.Search in Google Scholar
Berthold, H. J.; Knecht, H. Hochtemperaturammonolyse von urantrichlorid und urantetrachlorid. Angew. Chem. 1965b, 77, 910.Search in Google Scholar
Berthold, H. J.; Knecht, H. siehe 1064. Angew. Chem. Int. Ed. 1965c, 4, 433–434.Search in Google Scholar
Berthold, H. J.; Knecht, H. Über die ammoniakate des urantrichlorids und urantetrachlorids. Angew. Chem. 1965d, 77, 453.Search in Google Scholar
Berthold, H. J.; Knecht, H. Die Kristallstruktur des uranimidchlorids U(NH)Cl. Z. Anorg. Allg. Chem. 1966a, 348, 50–57.Search in Google Scholar
Berthold, H. J.; Knecht, H. Über die ammoniakate des urantetrafluorids. 1966b, 53, 305.Search in Google Scholar
Berthold, H. J.; Knecht, H. Ammoniakate und ammonolyse von urantetrachlorid. Z. Anorg. Allg. Chem. 1969, 366, 249–264.Search in Google Scholar
Biltz, W. Höhere ammoniakate von halogeniden aus der Eisengruppe. Z. Anorg. Allg. Chem. 1925a, 148, 145–151.Search in Google Scholar
Biltz, W. Über ammoniakate der cuprihalogenide. Z. Anorg. Allg. Chem. 1925b, 148, 207–216.Search in Google Scholar
Biltz, W.; Fetkenheuer, B. Über ammoniakverbindungen der nickelhalogenide. Z. Anorg. Allg. Chem. 1913, 83, 163–176.Search in Google Scholar
Biltz, W.; Fetkenheuer, B. Über ammoniakverbindungen der halogenide des zweiwertigen Kobalts. Z. Anorg. Allg. Chem. 1914a, 89, 97–133.Search in Google Scholar
Biltz, W.; Fetkenheuer, B. Über ammoniakverbindungen der halogenide des zweiwertigen nickels und kobalts und ihre beziehungen zueinander. Z. Anorg. Allg. Chem. 1914b, 89, 134–140.Search in Google Scholar
Biltz, W.; Fischer, W. Über die ammoniakate der bleihalogenide. Stammverbindungen und mischverbindungen. Z. Anorg. Allg. Chem. 1922, 124, 230–247.Search in Google Scholar
Biltz, W.; Fischer, W. Über ammoniakate der halogenide des zweiwertigen zinns. Z. Anorg. Allg. Chem. 1923, 129, 1–14.Search in Google Scholar
Biltz, W.; Hansen, W. Über ammoniakate der alkalimetallhalogenide. Z. Anorg. Allg. Chem. 1923, 127, 1–33.Search in Google Scholar
Biltz, W.; Hüttig, G. F. Über die ammoniakate der magnesiumhalogenide. Z. Anorg. Allg. Chem. 1921, 119, 115–131.Search in Google Scholar
Biltz, W.; Mau, C. Über die ammoniakate der cadmium- und quecksilberhalogenide. Z. Anorg. Allg. Chem. 1925, 148, 170–191.Search in Google Scholar
Biltz, W.; Messerknecht, C. Über die ammoniakate der zinkhalogenide. Z. Anorg. Allg. Chem. 1923, 129, 161–175.Search in Google Scholar
Biltz, W.; Messerknecht, C. Über die ammoniakate der berylliumhalogenide. Z. Anorg. Allg. Chem. 1925, 148, 157–169.Search in Google Scholar
Biltz, W.; Rahlfs, E. Über reaktionsermöglichung durch gittererweiterung und über ammoniakate der fluoride. Z. Anorg. Allg. Chem. 1927, 166, 351–376.Search in Google Scholar
Biltz, W.; Stollenwerk, W. Über halogensilberammoniakate. Z. Anorg. Allg. Chem. 1920, 114, 174–202.Search in Google Scholar
Biltz, W.; Stollenwerk, W. Über die ammoniakate der cupro- und thallohalogenide. Z. Anorg. Allg. Chem. 1921, 119, 97–114.Search in Google Scholar
Biltz, W.; Wein, W. Über die ammoniakate der aurohalogenide. Z. Anorg. Allg. Chem. 1925, 148, 192–206.Search in Google Scholar
Brogan, M. A.; Hughes, R. W.; Smith, R. I.; Gregory, D. H. Structural studies of magnesium nitride fluorides by powder neutron diffraction. J. Solid State Chem. 2012, 185, 213–218.Search in Google Scholar
Brown, H. C.; Johnson, S. Molecular addition compounds. I. The interaction of ammonia with ammonia-boron trifluoride at low temperatures. J. Am. Chem. Soc. 1945, 76, 1978–1979.Search in Google Scholar
Burk, W. Die reaktion des UCl3 und UBr3 mit NH3. Z. Anorg. Allg. Chem. 1967, 350, 62–69.Search in Google Scholar
Burk, W. Ammonolysis of uranium halides – ammonolysis reactions of uranium iodide and fluoride. 1969, 9, 233.Search in Google Scholar
Burk, W.; Naumann, D. Ammonolyse von urantetrachlorid und -tetrabromid. Z. Anorg. Allg. Chem. 1966, 344, 306–315.Search in Google Scholar
Burk, W.; Naumann, D. Über die ammonolyse von uranhalogeniden: III. Die überführung der urannitridhalogenide in uranmononitrid. 1969, 9, 189.Search in Google Scholar
Cohen, B.; Hooper, T. R.; Peacock, R. D. The preparation of tetrasulphur tetranitride and thiazyl fluoride from sulfur tetrafluoride. J. Inorg. Nucl. Chem. 1966, 28, 919–920.Search in Google Scholar
Cotton, A. F.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th Edition. John Wiley & Sons, Inc.: New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1999.Search in Google Scholar
Davy, J. BF3 NH3 SiF4. Phil. Trans. 1812, 102, 352.Search in Google Scholar
Dehnicke, K.; Neumüller, B. Neues aus der chemie des berylliums. Z. Anorg. Allg. Chem. 2008, 634, 2703–2728.Search in Google Scholar
Dougal, J. C.; Gans, P.; Gill, J. B.; Johnson, L. H. Complexation of noble transition metals in liquid ammonia. Pure Appl. Chem. 1988, 60, 1731–1742.Search in Google Scholar
Dressel, M. P.; Nogai, S.; Berger, R. J. F.; Schmidbaur, H. Beryllium dichloride coordination by nitrogen donor molecules. Z. Naturforsch. 2003, 58b, 173–182.Search in Google Scholar
Drozdzynski, J. Tervalent uranium compounds. Coord. Chem. Rev. 2005, 249, 2351–2373.Search in Google Scholar
Ephritikhine, M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. Dalton Trans. 2006, 21, 2501–2516.Search in Google Scholar
Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Molecular octa-uranium rings with alternating nitride and azide bridges. 2005, 309, 1835–1838.Search in Google Scholar
Fawcett, J.; Holloway, J. H.; Laycock, D.; Russel, D. R. Fluoride-ion donor properties of UF2O2 – Preparation and characterization of the adducts of UF2O2*nSbF5 (n=2 or 3) and crystal structure of UF2O2(SbF5)3. J. Chem. Soc. Dalton Trans. 1982, 7, 1355–1360.Search in Google Scholar
Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Towards uranium catalysts. 2008, 455, 341–349.Search in Google Scholar
Franklin, E. C. Kraus, C. A. Liquid ammonia as a aolvent. 1898, 20, 820–853.Search in Google Scholar
Galkin, N. P.; Sudarikov, B. N.; Zaitsev, V. A. Interaction of uranium hexafluoride UF6 with ammonia NH3. At. Energ. 1960, 8, 530–534.Search in Google Scholar
Gay-Lussac, J. L.; Thenard, J. L. BF3 NH3. Mem. Phys. Chim. Soc. d’Arcueil. 1809, 2, 210–211.Search in Google Scholar
Göbbels, D.; Meyer, G. Aufbau und abbau von (NH4)[BF4] und H3N-BF3. Z. Anorg. Allg. Chem. 2002, 628, 1799–1805.Search in Google Scholar
Graves, C. R.; Kiplinger, J. L. Pentavalent uranium chemistry – synthetic pursuit of a rare oxidation state, Chem. Commun. 2009, 26, 3831–3853.Search in Google Scholar
Grigor’ev, A. I.; Evseeva, N. K.; Sipachev, V. A. Beryllium ammonia. Zh. Strukt. Khim. 1969, 10, 469–473.Search in Google Scholar
Grigor’ev, A. I.; Sipachev, V. A.; Novoselova, A. V. Beryllium fluoride ammine. Russ. J. Inorg. Chem. 1967, 12, 319–321.Search in Google Scholar
Han, R.; Parkin, G. Organo beryllium. Inorg. Chem. 1993, 32, 4968–4970.Search in Google Scholar
Headspith, D. A.; Francesconi, M. G. Transition metal pnictide-halides: A class of under-explored compounds. 2009, 52, 1611–1627.Search in Google Scholar
Headspith, D. A.; Sullivan, E.; Greaves, C.; Francesconi, M. G. Synthesis and characterization of the quaternary nitride-fluoride Ce2MnN3F2-d. Dalton Trans. 2009, 42, 9273–9279.Search in Google Scholar
Holleman, A. F.; Wiberg, E. Lehrbuch der anorganischen chemie; 102nd Edition. Walter de Gruyter: Berlin, New York, 2007.10.1515/9783110177701Search in Google Scholar
Holloway, J. H.; Laycock, D.; Bougon, R. Preparation and characterization of the uranyl fluoride-antimony pentafluoride adduct, UF2O2*4SbF5. J. Chem. Soc. Dalton Trans. 1982, 8, 1635–1636.Search in Google Scholar
Jacob, E. Metallhexamethoxide. Angew. Chem. Suppl. 1982, 317–330.10.1002/anie.198203170Search in Google Scholar
Jander, J.; Doetsch, V.; Engelhardt, U.; Fischer, J.; Lafrenz, C.; Nagel, H.; Renz, W.; Türk, G.; von Volkmann, T.; Weber, G. Chemie in nichtwäßrigen ionisierenden lösungsmitteln – chemie in wasserfreiem flüssigem ammoniak; 1st Edition. Friedr. Vieweg & Sohn: Braunschweig, 1966.Search in Google Scholar
John, G. H.; May, I.; Collison, D.; Helliwell, M. Synthesis, structural and spectroscopic characterization of three di-mu-fluoro-bis[dioxouranyl] complexes. Polyhedron2004, 23, 3097–3103.Search in Google Scholar
Johnson, J. S.; Kraus, K. A. UO2F2. J. Am. Chem. Soc. 1952, 74, 4436–4439.10.1021/ja01137a060Search in Google Scholar
Johnson, J. S.; Kraus, K. A.; Young, T. F. UO2F2. J. Am. Chem. Soc. 1954, 76, 1436–1443.10.1021/ja01634a090Search in Google Scholar
Jung, W.; Juza, R. Darstellung und kristallstruktur des zirkonnitridfluorids. Z. Anorg. Allg. Chem. 1973a, 399, 129–147.Search in Google Scholar
Jung, W.; Juza, R. Nitridfluoride des Urans. Z. Anorg. Allg. Chem. 1973b, 399, 148–162.Search in Google Scholar
Juza, R.; Meyer, W. Über uran-nitrid-chlorid, -bromid und -jodid. Z. Anorg. Allg. Chem. 1969, 366, 43–50.Search in Google Scholar
Juza, R.; Sievers, R. Nitridhalogenide des thoriums. Z. Anorg. Allg. Chem. 1968, 363, 258–272.Search in Google Scholar
Kline, R. J.; Kershner, C. J. The oxidation of uranium(IV) acetate by silver acetate in liquid ammonia. Inorg. Chem. 1966, 5, 932–934.Search in Google Scholar
Knacke, O.; Lossmann, G.; Müller, F. Zur thermischen dissoziation und sublimation von UO2F2. Z. Anorg. Allg. Chem. 1969a, 371, 32–37.Search in Google Scholar
Knacke, O.; Lossmann, G.; Müller, F. Zustandsdiagramme zum system uran-sauerstoff-fluor. Z. Anorg. Allg. Chem. 1969b, 370, 91–103.Search in Google Scholar
Kovar, R. A.; Morgan, G. L. Beryllium-9 and hydrogen-1 magnetic resonance studies of beryllium compounds in solution. J. Am. Chem. Soc. 1970, 92, 5067–5072.Search in Google Scholar
Kraus, F.; Baer, S. A. UF6 and UF4 in liquid ammonia: [UF7(NH3)]3- and [UF4(NH3)4]. Chem. Eur. J. 2009, 15, 8269–8274.Search in Google Scholar
Kraus, F.; Baer, S. A. Higher ammoniates of BF3 and SiF4: Syntheses, crystal structures, and theoretical calculations. Z. Anorg. Allg. Chem. 2010, 636, 414–422.Search in Google Scholar
Kraus, F.; Baer, S. A. mer-triammine trifluorid iron(III), mer-[FeF3(NH3)3]. Z. Naturforsch. 2011a, 66b, 865–867.Search in Google Scholar
Kraus, F.; Baer, S. A. Tetraammine tetrafluorido cerium(IV) ammonia(1/1), [CeF4(NH3)4]*NH3, Z. Naturforsch. 2011b, 66b, 868–870.Search in Google Scholar
Kraus, F.; Baer, S. A.; Fichtl, M. B. The reactions of silver, zirconium and hafnium fluorides with liquid ammonia: Syntheses and crystal structures of Ag(NH3)2F·2NH3, [M(NH3)4F4]·NH3 (M = Zr, Hf), and (N2H7)F. Eur. J. Inorg. Chem. 2009a, 441–447.Search in Google Scholar
Kraus, F.; Fichtl, M. B.; Baer, S. A. Beryllium diammine difluoride [BeF2(NH3)2]. Z. Naturforsch. 2009b, 64b, 257–262.Search in Google Scholar
Kraus, F.; Baer, S. A.; Karttunen, A. J. The complex amide K2[Zr(NH2)6]. Z. Anorg. Allg. Chem. 2011, 637, 1122–1130.10.1002/zaac.201100083Search in Google Scholar
Kraus, F.; Baer, S. A.; Buchner, M. R.; Karttunen, A. J. Reactions of beryllium halides in liquid ammonia: The tetraammine beryllium cation [Be(NH3)4]2+, its hydrolysis products, and the action of Be2+ as a fluoride ion acceptor. Chem. Eur. J. 2012, 18, 2131–2142.Search in Google Scholar
Lagowski, J. J. Liquid ammonia. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2007, 37, 115–153.Search in Google Scholar
Marchand, R.; Lang, J. Preparation de nouveaux Halogenonitrures de Zinc. Mater. Res. Bull. 1971, 6, 845–852.Search in Google Scholar
Meng, W.; Kraus, F. Crystal structures of Ag2ZrF6·8NH3 and Ag2HfF6·8NH3 and their synthesis by the reactive fluoride route in liquid ammonia. Eur. J. Inorg. Chem. 2008, 3068–3074.10.1002/ejic.200800230Search in Google Scholar
Menil, F.; Pezat, M.; Tanguy, B.; Moureu, M. H. Étude par effet mössbauer du fluoronitrure de fer Fe4N3F3. C. R. Acad. Sci. Paris1975, 281, 849–852.Search in Google Scholar
Metz, S.; Holthausen, M. C.; Frenking, G. Theoretical studies of inorganic compounds. 36 Structures and bonding Analyses of Beryllium Chloro Complexes with Nitrogen. Z. Anorg. Allg. Chem. 2006, 632, 814–818.Search in Google Scholar
Meyer, K.; Minidola, D. J.; Baker, T. A.; Davis, W. M.; Cummins, C. C. Hexakisamidokomplexe des urans13. Angew. Chem. 2000a, 112, 3191–3194.Search in Google Scholar
Meyer, K.; Minidola, D. J.; Baker, T. A.; Davis, W. M.; Cummins, C. C. Uranium hexakisamido complexes13. Angew. Chem. 2000b, 39, 3063–3066.Search in Google Scholar
Mieleitner, K.; Steinmetz, H. Über das hydrat und das ammoniakat des berylliumchlorids. Z. Anorg. Allg. Chem. 1913, 80, 71–78.Search in Google Scholar
Myers, W. L. A Literature review on the chemical and physical properties of uranyl fluoride UO2F2. 1990, LA-11896-MS.10.2172/6856259Search in Google Scholar
Neumüller, B.; Dehnicke, K.; Puchta, R. Die kristallstruktur von [BeCl2(15-Krone-5)]. Z. Anorg. Allg. Chem. 2008, 634, 1473–1476.10.1002/zaac.200800145Search in Google Scholar
Nocton, G.; Pécaut, J.; Mazzanti, M. A nitrido centered uranium azide. Angew. Chem. 2008a, 120, 3082–3084.Search in Google Scholar
Nocton, G.; Pécaut, J.; Mazzanti, M. A nitrido-centered uranium azido cluster obtained from a uranium azide. Angew. Chem. Int. Ed. 2008b, 47, 3040–3042.Search in Google Scholar
Olsson, F. Über komplexe uranylfluoride. Z. Anorg. Allg. Chem. 1930, 187, 112–120.Search in Google Scholar
Patil, K. C.; Secco, E. A. Metal halide ammines. II. Thermal analyses, calorimetry and infrared spectra of fluoride ammines and hydrates of bivalent metals. Can. J. Chem. 1972, 50, 567–573.Search in Google Scholar
Peters, W. Die gültigkeit der wernerschen theorie der nebenvalenzen für das gebiet der ammoniakate. Z. Anorg. Allg. Chem. 1912, 77, 137–190.Search in Google Scholar
Pezat, M.; Tanguy, B.; Vlasse, M.; Portier, J.; Hagenmüller, P. Les fluoronitrures de terres rares. J. Solid State Chem. 1976, 18, 381–390.10.1016/0022-4596(76)90122-5Search in Google Scholar
Plitzko, C.; Meyer, G. Synthese und kristallstrukturen von NH4(Si(NH3)F5) und (Si(NH3)2F4). Z. Anorg. Allg. Chem. 1996, 622, 1646–1650.Search in Google Scholar
Plitzko, C.; Strecker, M.; Meyer, G. Synthese und kristallstruktur der “fluorid-ammoniakate” Zr(NH3)4F4 und Hf(NH3)F4. Z. Anorg. Allg. Chem. 1997, 623, 79–83.Search in Google Scholar
Puchta, R.; van Eldik, R. Ligand exchange processes on solvated beryllium cations. II [Be(solvent)(12-Crown-4)]2 + . Z. Anorg. Allg. Chem. 2008a, 634, 735–739.Search in Google Scholar
Puchta, R.; van Eldik, R. Ligand-exchange processes on solvated beryllium cations. III which model is preferable for quantum-chemical investigations of a water-exchange mechanism? Helv. Chim. Acta2008b, 91, 1063–1071.10.1002/hlca.200890114Search in Google Scholar
Puchta, R.; van Eldik, R. Ligand exchange processes on solvated beryllium cations. IV [Be(H2O)2(imidazole-based Chelate9]. Z. Anorg. Allg. Chem. 2008c, 634, 1915–1920.Search in Google Scholar
Puchta, R.; van Eikema Hommes, N.; van Eldik, R. Evidence for interchange ligand-exchange processes on solvated beryllium cations. Helv. Chim. Acta2005, 88, 911–922.Search in Google Scholar
Puchta, R.; Neumüller, B.; Dehnicke, K. (Ph4P)2[Be3(μ-OH)3(H2O)6]Cl5: Kristallstruktur und DFT-rechnungen. Z. Anorg. Allg. Chem. 2009a, 635, 1196–1199.Search in Google Scholar
Puchta, R.; Pasgreta, E.; van Eldik, R. Ligand exchange processes on the smallest solvated alkali and alkaline earth metal cations: an experimental and theoretical approach. Adv. Inorg. Chem. Radiochem. 2009b, 61, 523–571.Search in Google Scholar
Roos, M.; Meyer, G. Zwei galliumfluorid-ammoniakate: Ga(NH3)F3 und Ga(NH3)2F3. Z. Anorg. Allg. Chem. 1999a, 625, 1129–1134.Search in Google Scholar
Roos, M.; Meyer, G. Das monoammoniakat des galliumamidfluorids: Ga(NH3)(NH2)F2. Z. Anorg. Allg. Chem. 1999b, 625, 1839–1842.Search in Google Scholar
Ruhlandt-Senge, K.; Bartlett, R. A.; Olmstead, M.; Power, P. P. Organo beryllium. Inorg. Chem. 1993, 32, 1724–1728.Search in Google Scholar
Sahoo, B.; Satapathy, K. C. Preparation of uranium tetrafluoride by thermal decomposition of hydrazine uranyl fluoride complexes. J. Inorg. Nucl. Chem. 1964, 26, 1379–1380.Search in Google Scholar
Schmidbaur, H.; Kumberger, O.; Riede, J. Beryllium salicylate dihydrate. Inorg. Chem. 1991, 30, 3101–3103.10.1021/ic00015a032Search in Google Scholar
Schmidt, K. H.; Müller, A. Vibrational spectra and force constants of pure ammine complexes. Coord. Chem. Rev. 1976, 19, 41–97.Search in Google Scholar
Schmidt, M.; Schmidbaur, H. Ligand redistribution equilibria in aqueous fluoroberyllate solutions. Z. Naturforsch. 1998, 53b, 1294–1300.Search in Google Scholar
Schumb, W. C.; O’Malley, R. F. The fluorination of nitrides. Inorg. Chem. 1964, 3, 922–923.Search in Google Scholar
Semenenko, K. H. X-ray diffraction study of tetraammine beryllium chloride. Vestn. Mosk. Univ., Ser. 2: Khim. 1965, 20, 39–41.Search in Google Scholar
Sipachev, V. A.; Grigor’ev, A. I.; Novoselova, A. V. Beryllium ammonia. Zh. Strukt. Khim. 1969, 10, 1031–1035.Search in Google Scholar
Sohrin, Y.; Kokusen, H.; Kihara, S.; Matsui, M.; Kushi, Y.; Shiro, M. Organo beryllium. J. Am. Chem. Soc. 1993, 115, 4128–4136.10.1021/ja00063a034Search in Google Scholar
Spacu, P. Über die ammoniakate der uran-VI- und uran-IV-chloride. Z. Anorg. Allg. Chem. 1936, 230, 181–186.Search in Google Scholar
Tanguy, B.; Pezat, M.; Portier, J.; Hagenmüller, P. Sur un fluoronitrure de lanthane LaNxF3–3x. Mater. Res. Bull. 1971, 6, 57–62.Search in Google Scholar
Tanguy, B.; Pezat, M.; Portier, J.; Hagenmüller, P. Le fluoronitrure de gadolinium Gd3NF6. C. R. Acad. Sci. Paris1972, 274, 1344–1346.Search in Google Scholar
Vecher, R. A.; Volodkovich, L. M.; Petrov, G. S.; Usovich, E. G.; Vecher, A. A. Electrochemical properties of lanthanum fluoride nitride. Vestn. Belorus. Un-ta1984, 2, 8–11.Search in Google Scholar
Vogt, T.; Schweda, E.; Laval, J. P.; Frit, B. Neutron powder investigation of praseodymium and cerium nitride fluoride solid solutions. J. Solid State Chem. 1989, 83, 324–331.Search in Google Scholar
Voigt, A.; Abram, U.; Kirmse, R. The existence of [ReNF4]- – an EPR study. Inorg. Chem. Commun. 1998, 1, 141–142.Search in Google Scholar
von Unruh A., Universität Rostock, 1909.Search in Google Scholar
Wagner, T. R. Preparation and single-crystal structure analysis of Sr2NF. J. Solid State Chem. 2002, 169, 13–18.Search in Google Scholar
Weber, W.; Schweda, E. Darstellung und struktur von Sn(NH2)2F2. Z. Anorg. Allg. Chem. 1998, 624, 1221–1224.Search in Google Scholar
Woidy, P.; Karttunen, A. J.; Kraus, F. Uranyl halides from liquid ammonia: [UO2(NH3)5]Cl2·NH3 and [UO2(NH3)3F2]2·2NH3 and their decomposition products. Z. Anorg. Allg. Chem. 2012, accepted.10.1002/zaac.201200127Search in Google Scholar
Woodward, P.; Vogt, T.; Weber, W.; Schweda, E. Structure of Sn(ND3)2F4 – A molecular precursor for the synthesis of nitride fluorides. J. Solid State Chem. 1998, 138, 350–360.Search in Google Scholar
Yoshihara, K.; Kanno, M.; Mukaibo, T. A new compound – UNF. J. Inorg. Nucl. Chem. 1969, 31, 985–988.10.1016/0022-1902(69)80146-6Search in Google Scholar
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Masthead
- Masthead
- Review
- Rates of protonation of thiolate and sulfide ligands in mononuclear complexes and Fe-S-based clusters: implications for metalloenzymes
- Fluorine chemistry meets liquid ammonia
- Metal-oxo-mediated O-O bond formation reactions in chemistry and biology
- Diiron complexes on macrocyclic porphyrin-like platform as oxidation catalysts: reactivity and mechanistic considerations
Articles in the same Issue
- Masthead
- Masthead
- Review
- Rates of protonation of thiolate and sulfide ligands in mononuclear complexes and Fe-S-based clusters: implications for metalloenzymes
- Fluorine chemistry meets liquid ammonia
- Metal-oxo-mediated O-O bond formation reactions in chemistry and biology
- Diiron complexes on macrocyclic porphyrin-like platform as oxidation catalysts: reactivity and mechanistic considerations