Home Physical Sciences Fluorine chemistry meets liquid ammonia
Article
Licensed
Unlicensed Requires Authentication

Fluorine chemistry meets liquid ammonia

  • Florian Kraus EMAIL logo
Published/Copyright: July 1, 2012
Become an author with De Gruyter Brill

Chemistry of metal and non-metal fluorides in liquid ammonia is often severely hampered, due to the low solubility of inorganic fluorides. This can be overcome by applying either strongly oxidizing fluorides, appropriate fluoride ion acceptors, or by the reduction or conversion of fluorides using solvated electrons. The article summarizes the state-of-the-art of the chemistry of inorganic fluorides in liquid ammonia, with special emphasis on compounds of beryllium, silver and uranium.


Corresponding author: Florian Kraus, Arbeitsgruppe Fluorchemie, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

References

Ahrland, S.; Larsson, R. The complexity of uranyl fluoride. Acta Chem. Scand. 1954, 8, 354–366.Search in Google Scholar

Ahrland, S.; Larsson, R.; Rosengren, K. On the complex chemistry of the uranyl ion VIII. The complexity of uranyl fluoride. Acta Chem. Scand. 1956, 10, 705–718.Search in Google Scholar

Andersson, S. Magnesium nitride fluorides. J. Solid State Chem. 1970, 1, 306–309.Search in Google Scholar

Andrews, L.; Wang, X.; Lindh, R.; Roos, B. O.; Marsden, C. J. Simple NUF3 and PUF3 molecules with triple bonds to uranium. Angew. Chem. 2008, 120, 5446–5450.Search in Google Scholar

Baer, S. A.; Kraus, F. Cesium fluoride ammonia (3/4) [Cs3F3(NH3)4] and ammonium cesium difluoride [NH4CsF2]. Z. Naturforsch. 2010, 65b, 1177–1184.Search in Google Scholar

Baldas, J.; Boas, J. F.; Ivanov, Z. E.p.r. evidence for the formation of the six-coordinate pentafluoronitridotechnetate(VI) anion in solution. Transition Met. Chem. 1997, 22, 74–78.Search in Google Scholar

Bart, S. C.; Meyer, K. Highlights in Uranium Coordination Chemistry. In Structure and Bonding 127: Organometallic and Coordination Chemistry of the Actinides; Springer-Verlag: Berlin, Heidelberg, 2008, pp. 119–176.10.1007/430_2007_081Search in Google Scholar

Bergstrom, F. W. The action of liquid ammonia solutions of ammonia salts on metallic beryllium. Ammonated beryllium halides and ammonobasic beryllium salts. J. Am. Chem. Soc. 1928, 50, 657–662.Search in Google Scholar

Berthet, J.-C.; Thuéry, P.; Ephritikhine, M. Polyimido clusters of neodymium and uranium, including a cluster with an M6(μ3-N)8 core. Eur. J. Inorg. Chem. 2008, 5455–5459.10.1002/ejic.200800947Search in Google Scholar

Berthold, H. J.; Delliehausen, C. Darstellung und röntgenographische Untersuchung höherer Urannitride. Angew. Chem. 1966a, 78, 750–751.Search in Google Scholar

Berthold, H. J.; Delliehausen, C. siehe 1067. Angew. Chem. Int. Ed. 1966b, 5, 726.Search in Google Scholar

Berthold, H. J.; Hein, H. G. Über die hochtemperaturammonolyse von UF4. Angew. Chem. 1969, 81, 910.Search in Google Scholar

Berthold, H. J.; Knecht, H. Ammoniates of uranium trichloride and tetrachloride. Angew. Chem. Int. Ed. 1965a, 4, 431–432.Search in Google Scholar

Berthold, H. J.; Knecht, H. Hochtemperaturammonolyse von urantrichlorid und urantetrachlorid. Angew. Chem. 1965b, 77, 910.Search in Google Scholar

Berthold, H. J.; Knecht, H. siehe 1064. Angew. Chem. Int. Ed. 1965c, 4, 433–434.Search in Google Scholar

Berthold, H. J.; Knecht, H. Über die ammoniakate des urantrichlorids und urantetrachlorids. Angew. Chem. 1965d, 77, 453.Search in Google Scholar

Berthold, H. J.; Knecht, H. Die Kristallstruktur des uranimidchlorids U(NH)Cl. Z. Anorg. Allg. Chem. 1966a, 348, 50–57.Search in Google Scholar

Berthold, H. J.; Knecht, H. Über die ammoniakate des urantetrafluorids. 1966b, 53, 305.Search in Google Scholar

Berthold, H. J.; Knecht, H. Ammoniakate und ammonolyse von urantetrachlorid. Z. Anorg. Allg. Chem. 1969, 366, 249–264.Search in Google Scholar

Biltz, W. Höhere ammoniakate von halogeniden aus der Eisengruppe. Z. Anorg. Allg. Chem. 1925a, 148, 145–151.Search in Google Scholar

Biltz, W. Über ammoniakate der cuprihalogenide. Z. Anorg. Allg. Chem. 1925b, 148, 207–216.Search in Google Scholar

Biltz, W.; Fetkenheuer, B. Über ammoniakverbindungen der nickelhalogenide. Z. Anorg. Allg. Chem. 1913, 83, 163–176.Search in Google Scholar

Biltz, W.; Fetkenheuer, B. Über ammoniakverbindungen der halogenide des zweiwertigen Kobalts. Z. Anorg. Allg. Chem. 1914a, 89, 97–133.Search in Google Scholar

Biltz, W.; Fetkenheuer, B. Über ammoniakverbindungen der halogenide des zweiwertigen nickels und kobalts und ihre beziehungen zueinander. Z. Anorg. Allg. Chem. 1914b, 89, 134–140.Search in Google Scholar

Biltz, W.; Fischer, W. Über die ammoniakate der bleihalogenide. Stammverbindungen und mischverbindungen. Z. Anorg. Allg. Chem. 1922, 124, 230–247.Search in Google Scholar

Biltz, W.; Fischer, W. Über ammoniakate der halogenide des zweiwertigen zinns. Z. Anorg. Allg. Chem. 1923, 129, 1–14.Search in Google Scholar

Biltz, W.; Hansen, W. Über ammoniakate der alkalimetallhalogenide. Z. Anorg. Allg. Chem. 1923, 127, 1–33.Search in Google Scholar

Biltz, W.; Hüttig, G. F. Über die ammoniakate der magnesium­halogenide. Z. Anorg. Allg. Chem. 1921, 119, 115–131.Search in Google Scholar

Biltz, W.; Mau, C. Über die ammoniakate der cadmium- und quecksilberhalogenide. Z. Anorg. Allg. Chem. 1925, 148, 170–191.Search in Google Scholar

Biltz, W.; Messerknecht, C. Über die ammoniakate der zinkhalogenide. Z. Anorg. Allg. Chem. 1923, 129, 161–175.Search in Google Scholar

Biltz, W.; Messerknecht, C. Über die ammoniakate der berylliumhalogenide. Z. Anorg. Allg. Chem. 1925, 148, 157–169.Search in Google Scholar

Biltz, W.; Rahlfs, E. Über reaktionsermöglichung durch gittererweiterung und über ammoniakate der fluoride. Z. Anorg. Allg. Chem. 1927, 166, 351–376.Search in Google Scholar

Biltz, W.; Stollenwerk, W. Über halogensilberammoniakate. Z. Anorg. Allg. Chem. 1920, 114, 174–202.Search in Google Scholar

Biltz, W.; Stollenwerk, W. Über die ammoniakate der cupro- und thallohalogenide. Z. Anorg. Allg. Chem. 1921, 119, 97–114.Search in Google Scholar

Biltz, W.; Wein, W. Über die ammoniakate der aurohalogenide. Z. Anorg. Allg. Chem. 1925, 148, 192–206.Search in Google Scholar

Brogan, M. A.; Hughes, R. W.; Smith, R. I.; Gregory, D. H. Structural studies of magnesium nitride fluorides by powder neutron diffraction. J. Solid State Chem. 2012, 185, 213–218.Search in Google Scholar

Brown, H. C.; Johnson, S. Molecular addition compounds. I. The interaction of ammonia with ammonia-boron trifluoride at low temperatures. J. Am. Chem. Soc. 1945, 76, 1978–1979.Search in Google Scholar

Burk, W. Die reaktion des UCl3 und UBr3 mit NH3. Z. Anorg. Allg. Chem. 1967, 350, 62–69.Search in Google Scholar

Burk, W. Ammonolysis of uranium halides – ammonolysis reactions of uranium iodide and fluoride. 1969, 9, 233.Search in Google Scholar

Burk, W.; Naumann, D. Ammonolyse von urantetrachlorid und -tetrabromid. Z. Anorg. Allg. Chem. 1966, 344, 306–315.Search in Google Scholar

Burk, W.; Naumann, D. Über die ammonolyse von uranhalogeniden: III. Die überführung der urannitridhalogenide in uranmononitrid. 1969, 9, 189.Search in Google Scholar

Cohen, B.; Hooper, T. R.; Peacock, R. D. The preparation of tetrasulphur tetranitride and thiazyl fluoride from sulfur tetrafluoride. J. Inorg. Nucl. Chem. 1966, 28, 919–920.Search in Google Scholar

Cotton, A. F.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th Edition. John Wiley & Sons, Inc.: New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1999.Search in Google Scholar

Davy, J. BF3 NH3 SiF4. Phil. Trans. 1812, 102, 352.Search in Google Scholar

Dehnicke, K.; Neumüller, B. Neues aus der chemie des berylliums. Z. Anorg. Allg. Chem. 2008, 634, 2703–2728.Search in Google Scholar

Dougal, J. C.; Gans, P.; Gill, J. B.; Johnson, L. H. Complexation of noble transition metals in liquid ammonia. Pure Appl. Chem. 1988, 60, 1731–1742.Search in Google Scholar

Dressel, M. P.; Nogai, S.; Berger, R. J. F.; Schmidbaur, H. Beryllium dichloride coordination by nitrogen donor molecules. Z. Naturforsch. 2003, 58b, 173–182.Search in Google Scholar

Drozdzynski, J. Tervalent uranium compounds. Coord. Chem. Rev. 2005, 249, 2351–2373.Search in Google Scholar

Ephritikhine, M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. Dalton Trans. 2006, 21, 2501–2516.Search in Google Scholar

Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Molecular octa-uranium rings with alternating nitride and azide bridges. 2005, 309, 1835–1838.Search in Google Scholar

Fawcett, J.; Holloway, J. H.; Laycock, D.; Russel, D. R. Fluoride-ion donor properties of UF2O2 – Preparation and characterization of the adducts of UF2O2*nSbF5 (n=2 or 3) and crystal structure of UF2O2(SbF5)3. J. Chem. Soc. Dalton Trans. 1982, 7, 1355–1360.Search in Google Scholar

Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Towards uranium catalysts. 2008, 455, 341–349.Search in Google Scholar

Franklin, E. C. Kraus, C. A. Liquid ammonia as a aolvent. 1898, 20, 820–853.Search in Google Scholar

Galkin, N. P.; Sudarikov, B. N.; Zaitsev, V. A. Interaction of uranium hexafluoride UF6 with ammonia NH3. At. Energ. 1960, 8, 530–534.Search in Google Scholar

Gay-Lussac, J. L.; Thenard, J. L. BF3 NH3. Mem. Phys. Chim. Soc. d’Arcueil. 1809, 2, 210–211.Search in Google Scholar

Göbbels, D.; Meyer, G. Aufbau und abbau von (NH4)[BF4] und H3N-BF3. Z. Anorg. Allg. Chem. 2002, 628, 1799–1805.Search in Google Scholar

Graves, C. R.; Kiplinger, J. L. Pentavalent uranium chemistry – synthetic pursuit of a rare oxidation state, Chem. Commun. 2009, 26, 3831–3853.Search in Google Scholar

Grigor’ev, A. I.; Evseeva, N. K.; Sipachev, V. A. Beryllium ammonia. Zh. Strukt. Khim. 1969, 10, 469–473.Search in Google Scholar

Grigor’ev, A. I.; Sipachev, V. A.; Novoselova, A. V. Beryllium fluoride ammine. Russ. J. Inorg. Chem. 1967, 12, 319–321.Search in Google Scholar

Han, R.; Parkin, G. Organo beryllium. Inorg. Chem. 1993, 32, 4968–4970.Search in Google Scholar

Headspith, D. A.; Francesconi, M. G. Transition metal pnictide-halides: A class of under-explored compounds. 2009, 52, 1611–1627.Search in Google Scholar

Headspith, D. A.; Sullivan, E.; Greaves, C.; Francesconi, M. G. Synthesis and characterization of the quaternary nitride-fluoride Ce2MnN3F2-d. Dalton Trans. 2009, 42, 9273–9279.Search in Google Scholar

Holleman, A. F.; Wiberg, E. Lehrbuch der anorganischen chemie; 102nd Edition. Walter de Gruyter: Berlin, New York, 2007.10.1515/9783110177701Search in Google Scholar

Holloway, J. H.; Laycock, D.; Bougon, R. Preparation and characterization of the uranyl fluoride-antimony pentafluoride adduct, UF2O2*4SbF5. J. Chem. Soc. Dalton Trans. 1982, 8, 1635–1636.Search in Google Scholar

Jacob, E. Metallhexamethoxide. Angew. Chem. Suppl. 1982, 317–330.10.1002/anie.198203170Search in Google Scholar

Jander, J.; Doetsch, V.; Engelhardt, U.; Fischer, J.; Lafrenz, C.; Nagel, H.; Renz, W.; Türk, G.; von Volkmann, T.; Weber, G. Chemie in nichtwäßrigen ionisierenden lösungsmitteln – chemie in wasserfreiem flüssigem ammoniak; 1st Edition. Friedr. Vieweg & Sohn: Braunschweig, 1966.Search in Google Scholar

John, G. H.; May, I.; Collison, D.; Helliwell, M. Synthesis, structural and spectroscopic characterization of three di-mu-fluoro-bis[dioxouranyl] complexes. Polyhedron2004, 23, 3097–3103.Search in Google Scholar

Johnson, J. S.; Kraus, K. A. UO2F2. J. Am. Chem. Soc. 1952, 74, 4436–4439.10.1021/ja01137a060Search in Google Scholar

Johnson, J. S.; Kraus, K. A.; Young, T. F. UO2F2. J. Am. Chem. Soc. 1954, 76, 1436–1443.10.1021/ja01634a090Search in Google Scholar

Jung, W.; Juza, R. Darstellung und kristallstruktur des zirkonnitridfluorids. Z. Anorg. Allg. Chem. 1973a, 399, 129–147.Search in Google Scholar

Jung, W.; Juza, R. Nitridfluoride des Urans. Z. Anorg. Allg. Chem. 1973b, 399, 148–162.Search in Google Scholar

Juza, R.; Meyer, W. Über uran-nitrid-chlorid, -bromid und -jodid. Z. Anorg. Allg. Chem. 1969, 366, 43–50.Search in Google Scholar

Juza, R.; Sievers, R. Nitridhalogenide des thoriums. Z. Anorg. Allg. Chem. 1968, 363, 258–272.Search in Google Scholar

Kline, R. J.; Kershner, C. J. The oxidation of uranium(IV) acetate by silver acetate in liquid ammonia. Inorg. Chem. 1966, 5, 932–934.Search in Google Scholar

Knacke, O.; Lossmann, G.; Müller, F. Zur thermischen dissoziation und sublimation von UO2F2. Z. Anorg. Allg. Chem. 1969a, 371, 32–37.Search in Google Scholar

Knacke, O.; Lossmann, G.; Müller, F. Zustandsdiagramme zum system uran-sauerstoff-fluor. Z. Anorg. Allg. Chem. 1969b, 370, 91–103.Search in Google Scholar

Kovar, R. A.; Morgan, G. L. Beryllium-9 and hydrogen-1 magnetic resonance studies of beryllium compounds in solution. J. Am. Chem. Soc. 1970, 92, 5067–5072.Search in Google Scholar

Kraus, F.; Baer, S. A. UF6 and UF4 in liquid ammonia: [UF7(NH3)]3- and [UF4(NH3)4]. Chem. Eur. J. 2009, 15, 8269–8274.Search in Google Scholar

Kraus, F.; Baer, S. A. Higher ammoniates of BF3 and SiF4: Syntheses, crystal structures, and theoretical calculations. Z. Anorg. Allg. Chem. 2010, 636, 414–422.Search in Google Scholar

Kraus, F.; Baer, S. A. mer-triammine trifluorid iron(III), mer-[FeF3(NH3)3]. Z. Naturforsch. 2011a, 66b, 865–867.Search in Google Scholar

Kraus, F.; Baer, S. A. Tetraammine tetrafluorido cerium(IV) ammonia(1/1), [CeF4(NH3)4]*NH3, Z. Naturforsch. 2011b, 66b, 868–870.Search in Google Scholar

Kraus, F.; Baer, S. A.; Fichtl, M. B. The reactions of silver, zirconium and hafnium fluorides with liquid ammonia: Syntheses and crystal structures of Ag(NH3)2F·2NH3, [M(NH3)4F4]·NH3 (M = Zr, Hf), and (N2H7)F. Eur. J. Inorg. Chem. 2009a, 441–447.Search in Google Scholar

Kraus, F.; Fichtl, M. B.; Baer, S. A. Beryllium diammine difluoride [BeF2(NH3)2]. Z. Naturforsch. 2009b, 64b, 257–262.Search in Google Scholar

Kraus, F.; Baer, S. A.; Karttunen, A. J. The complex amide K2[Zr(NH2)6]. Z. Anorg. Allg. Chem. 2011, 637, 1122–1130.10.1002/zaac.201100083Search in Google Scholar

Kraus, F.; Baer, S. A.; Buchner, M. R.; Karttunen, A. J. Reactions of beryllium halides in liquid ammonia: The tetraammine beryllium cation [Be(NH3)4]2+, its hydrolysis products, and the action of Be2+ as a fluoride ion acceptor. Chem. Eur. J. 2012, 18, 2131–2142.Search in Google Scholar

Lagowski, J. J. Liquid ammonia. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2007, 37, 115–153.Search in Google Scholar

Marchand, R.; Lang, J. Preparation de nouveaux Halogenonitrures de Zinc. Mater. Res. Bull. 1971, 6, 845–852.Search in Google Scholar

Meng, W.; Kraus, F. Crystal structures of Ag2ZrF6·8NH3 and Ag2HfF6·8NH3 and their synthesis by the reactive fluoride route in liquid ammonia. Eur. J. Inorg. Chem. 2008, 3068–3074.10.1002/ejic.200800230Search in Google Scholar

Menil, F.; Pezat, M.; Tanguy, B.; Moureu, M. H. Étude par effet mössbauer du fluoronitrure de fer Fe4N3F3. C. R. Acad. Sci. Paris1975, 281, 849–852.Search in Google Scholar

Metz, S.; Holthausen, M. C.; Frenking, G. Theoretical studies of inorganic compounds. 36 Structures and bonding Analyses of Beryllium Chloro Complexes with Nitrogen. Z. Anorg. Allg. Chem. 2006, 632, 814–818.Search in Google Scholar

Meyer, K.; Minidola, D. J.; Baker, T. A.; Davis, W. M.; Cummins, C. C. Hexakisamidokomplexe des urans13. Angew. Chem. 2000a, 112, 3191–3194.Search in Google Scholar

Meyer, K.; Minidola, D. J.; Baker, T. A.; Davis, W. M.; Cummins, C. C. Uranium hexakisamido complexes13. Angew. Chem. 2000b, 39, 3063–3066.Search in Google Scholar

Mieleitner, K.; Steinmetz, H. Über das hydrat und das ammoniakat des berylliumchlorids. Z. Anorg. Allg. Chem. 1913, 80, 71–78.Search in Google Scholar

Myers, W. L. A Literature review on the chemical and physical properties of uranyl fluoride UO2F2. 1990, LA-11896-MS.10.2172/6856259Search in Google Scholar

Neumüller, B.; Dehnicke, K.; Puchta, R. Die kristallstruktur von [BeCl2(15-Krone-5)]. Z. Anorg. Allg. Chem. 2008, 634, 1473–1476.10.1002/zaac.200800145Search in Google Scholar

Nocton, G.; Pécaut, J.; Mazzanti, M. A nitrido centered uranium azide. Angew. Chem. 2008a, 120, 3082–3084.Search in Google Scholar

Nocton, G.; Pécaut, J.; Mazzanti, M. A nitrido-centered uranium azido cluster obtained from a uranium azide. Angew. Chem. Int. Ed. 2008b, 47, 3040–3042.Search in Google Scholar

Olsson, F. Über komplexe uranylfluoride. Z. Anorg. Allg. Chem. 1930, 187, 112–120.Search in Google Scholar

Patil, K. C.; Secco, E. A. Metal halide ammines. II. Thermal analyses, calorimetry and infrared spectra of fluoride ammines and hydrates of bivalent metals. Can. J. Chem. 1972, 50, 567–573.Search in Google Scholar

Peters, W. Die gültigkeit der wernerschen theorie der nebenvalenzen für das gebiet der ammoniakate. Z. Anorg. Allg. Chem. 1912, 77, 137–190.Search in Google Scholar

Pezat, M.; Tanguy, B.; Vlasse, M.; Portier, J.; Hagenmüller, P. Les fluoronitrures de terres rares. J. Solid State Chem. 1976, 18, 381–390.10.1016/0022-4596(76)90122-5Search in Google Scholar

Plitzko, C.; Meyer, G. Synthese und kristallstrukturen von NH4(Si(NH3)F5) und (Si(NH3)2F4). Z. Anorg. Allg. Chem. 1996, 622, 1646–1650.Search in Google Scholar

Plitzko, C.; Strecker, M.; Meyer, G. Synthese und kristallstruktur der “fluorid-ammoniakate” Zr(NH3)4F4 und Hf(NH3)F4. Z. Anorg. Allg. Chem. 1997, 623, 79–83.Search in Google Scholar

Puchta, R.; van Eldik, R. Ligand exchange processes on solvated beryllium cations. II [Be(solvent)(12-Crown-4)]2 + . Z. Anorg. Allg. Chem. 2008a, 634, 735–739.Search in Google Scholar

Puchta, R.; van Eldik, R. Ligand-exchange processes on solvated beryllium cations. III which model is preferable for quantum-chemical investigations of a water-exchange mechanism? Helv. Chim. Acta2008b, 91, 1063–1071.10.1002/hlca.200890114Search in Google Scholar

Puchta, R.; van Eldik, R. Ligand exchange processes on solvated beryllium cations. IV [Be(H2O)2(imidazole-based Chelate9]. Z. Anorg. Allg. Chem. 2008c, 634, 1915–1920.Search in Google Scholar

Puchta, R.; van Eikema Hommes, N.; van Eldik, R. Evidence for interchange ligand-exchange processes on solvated beryllium cations. Helv. Chim. Acta2005, 88, 911–922.Search in Google Scholar

Puchta, R.; Neumüller, B.; Dehnicke, K. (Ph4P)2[Be3(μ-OH)3(H2O)6]Cl5: Kristallstruktur und DFT-rechnungen. Z. Anorg. Allg. Chem. 2009a, 635, 1196–1199.Search in Google Scholar

Puchta, R.; Pasgreta, E.; van Eldik, R. Ligand exchange processes on the smallest solvated alkali and alkaline earth metal cations: an experimental and theoretical approach. Adv. Inorg. Chem. Radiochem. 2009b, 61, 523–571.Search in Google Scholar

Roos, M.; Meyer, G. Zwei galliumfluorid-ammoniakate: Ga(NH3)F3 und Ga(NH3)2F3. Z. Anorg. Allg. Chem. 1999a, 625, 1129–1134.Search in Google Scholar

Roos, M.; Meyer, G. Das monoammoniakat des galliumamidfluorids: Ga(NH3)(NH2)F2. Z. Anorg. Allg. Chem. 1999b, 625, 1839–1842.Search in Google Scholar

Ruhlandt-Senge, K.; Bartlett, R. A.; Olmstead, M.; Power, P. P. Organo beryllium. Inorg. Chem. 1993, 32, 1724–1728.Search in Google Scholar

Sahoo, B.; Satapathy, K. C. Preparation of uranium tetrafluoride by thermal decomposition of hydrazine uranyl fluoride complexes. J. Inorg. Nucl. Chem. 1964, 26, 1379–1380.Search in Google Scholar

Schmidbaur, H.; Kumberger, O.; Riede, J. Beryllium salicylate dihydrate. Inorg. Chem. 1991, 30, 3101–3103.10.1021/ic00015a032Search in Google Scholar

Schmidt, K. H.; Müller, A. Vibrational spectra and force constants of pure ammine complexes. Coord. Chem. Rev. 1976, 19, 41–97.Search in Google Scholar

Schmidt, M.; Schmidbaur, H. Ligand redistribution equilibria in aqueous fluoroberyllate solutions. Z. Naturforsch. 1998, 53b, 1294–1300.Search in Google Scholar

Schumb, W. C.; O’Malley, R. F. The fluorination of nitrides. Inorg. Chem. 1964, 3, 922–923.Search in Google Scholar

Semenenko, K. H. X-ray diffraction study of tetraammine beryllium chloride. Vestn. Mosk. Univ., Ser. 2: Khim. 1965, 20, 39–41.Search in Google Scholar

Sipachev, V. A.; Grigor’ev, A. I.; Novoselova, A. V. Beryllium ammonia. Zh. Strukt. Khim. 1969, 10, 1031–1035.Search in Google Scholar

Sohrin, Y.; Kokusen, H.; Kihara, S.; Matsui, M.; Kushi, Y.; Shiro, M. Organo beryllium. J. Am. Chem. Soc. 1993, 115, 4128–4136.10.1021/ja00063a034Search in Google Scholar

Spacu, P. Über die ammoniakate der uran-VI- und uran-IV-chloride. Z. Anorg. Allg. Chem. 1936, 230, 181–186.Search in Google Scholar

Tanguy, B.; Pezat, M.; Portier, J.; Hagenmüller, P. Sur un fluoronitrure de lanthane LaNxF3–3x. Mater. Res. Bull. 1971, 6, 57–62.Search in Google Scholar

Tanguy, B.; Pezat, M.; Portier, J.; Hagenmüller, P. Le fluoronitrure de gadolinium Gd3NF6. C. R. Acad. Sci. Paris1972, 274, 1344–1346.Search in Google Scholar

Vecher, R. A.; Volodkovich, L. M.; Petrov, G. S.; Usovich, E. G.; Vecher, A. A. Electrochemical properties of lanthanum fluoride nitride. Vestn. Belorus. Un-ta1984, 2, 8–11.Search in Google Scholar

Vogt, T.; Schweda, E.; Laval, J. P.; Frit, B. Neutron powder investigation of praseodymium and cerium nitride fluoride solid solutions. J. Solid State Chem. 1989, 83, 324–331.Search in Google Scholar

Voigt, A.; Abram, U.; Kirmse, R. The existence of [ReNF4]- – an EPR study. Inorg. Chem. Commun. 1998, 1, 141–142.Search in Google Scholar

von Unruh A., Universität Rostock, 1909.Search in Google Scholar

Wagner, T. R. Preparation and single-crystal structure analysis of Sr2NF. J. Solid State Chem. 2002, 169, 13–18.Search in Google Scholar

Weber, W.; Schweda, E. Darstellung und struktur von Sn(NH2)2F2. Z. Anorg. Allg. Chem. 1998, 624, 1221–1224.Search in Google Scholar

Woidy, P.; Karttunen, A. J.; Kraus, F. Uranyl halides from liquid ammonia: [UO2(NH3)5]Cl2·NH3 and [UO2(NH3)3F2]2·2NH3 and their decomposition products. Z. Anorg. Allg. Chem. 2012, accepted.10.1002/zaac.201200127Search in Google Scholar

Woodward, P.; Vogt, T.; Weber, W.; Schweda, E. Structure of Sn(ND3)2F4 – A molecular precursor for the synthesis of nitride fluorides. J. Solid State Chem. 1998, 138, 350–360.Search in Google Scholar

Yoshihara, K.; Kanno, M.; Mukaibo, T. A new compound – UNF. J. Inorg. Nucl. Chem. 1969, 31, 985–988.10.1016/0022-1902(69)80146-6Search in Google Scholar

Received: 2012-4-16
Accepted: 2012-5-29
Published Online: 2012-07-01
Published in Print: 2012-07-01

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Downloaded on 15.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/irm-2012-0003/html
Scroll to top button