Abstract
Biogas upgrading is a widely studied and discussed topic. Many different technologies have been employed to obtain biomethane from biogas. Methods like water scrubbing or pressure swing adsorption are commonly used and can be declared as well established. Membrane gas permeation found its place among the biogas upgrading methods some years ago. Here, we try to summarize the progress in the implementation of gas permeation in biogas upgrading. Gas permeation has been already accepted as a commercially feasible method for CO2 removal. Many different membranes and membrane modules have been tested and also some commercial devices are available. On the other hand, utilization of gas permeation in other steps of biogas upgrading like desulfurization, drying, or VOC removal is still rather rare. This review shows that membrane gas permeation is able to compete with classical biogas upgrading methods and tries to point out the main challenges of the research.
References
Abatzoglou, N. & Boivin, S. (2009). A review of biogas purification processes. Biofuels, Bioproducts & Biorefining, 3, 42-71. DOI: 10.1002/bbb.117.10.1002/bbb.117Search in Google Scholar
Air Liquide (2015). MEDAL: Biogaz membrane technology for upgrading biogas to bio-methane. Retrieved January 2, 2015, from http://www.medal.airliquide.com/en/biogazsystems/medal-biogaz-membranes.htmlSearch in Google Scholar
Air Products and Chemicals (2015). PRISM® Membrane Separators for biogas upgrading. Retrieved January 2, 2015, from http://www.airproducts.com/~/media/Files/PDF/products/supply-options/prism-membrane/en-prismmembrane-separators-for-biogas-upgrading.pdfSearch in Google Scholar
Ajhar, M., & Melin, T. (2006). Siloxane removal with gas permeation membranes. Desalination, 200, 234-235. DOI: 10.1016/j.desal.2006.03.308.10.1016/j.desal.2006.03.308Search in Google Scholar
Baker, R. W. (2002). Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 41, 1393-1411. DOI: 10.1021/ie0108088.10.1021/ie0108088Search in Google Scholar
BORSIG Membrane Technology (2015). BORSIG Biogas Processing: CO2 separation with membrane technology. Retrieved January 2, 2015, from http://mt.borsig.de/en/products/membrane-units-for-gas-separation/borsig-biogasconditioning.htmlSearch in Google Scholar
Brunetti, A., Scura, F., Barbieri, G., & Drioli, E. (2010). Membrane technologies for CO2 separation. Journal of Membrane Science, 359, 115-125. DOI: 10.1016/j.memsci.2009.11.040.10.1016/j.memsci.2009.11.040Search in Google Scholar
Brunetti, A., Drioli, E., Lee, Y. M., & Barbieri, G. (2014). Engineering evaluation of CO2 separation by membrane gas separation system. Journal of Membrane Science, 454, 305-315. DOI: 10.1016/j.memsci.2013.12.037.10.1016/j.memsci.2013.12.037Search in Google Scholar
Corti, A., Fiaschi, D., & Lombardi, L. (2004). Carbon dioxide removal in power generation using membrane technology. Energy, 29, 2025-2043. DOI: 10.1016/j.energy.2004.03.011.10.1016/j.energy.2004.03.011Search in Google Scholar
Deng, L. Y., & Hägg, M. B. (2010). Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. International Journal of Greenhouse Gas Control, 4, 638-646. DOI: 10.1016/j.ijggc.2009.12.013.10.1016/j.ijggc.2009.12.013Search in Google Scholar
Dolejš, P., Poštulka, V., Sedláková, Z., Jandová, V., Vejražka, J., Esposito, E., Jansen, J. C., & Izák, P. (2014). Simultaneous hydrogen sulphide and carbon dioxide removal from biogas by water-swollen reverse osmosis membrane. Separation and Purification Technology, 131, 108-116. DOI: 10.1016/j.seppur.2014.04.041.10.1016/j.seppur.2014.04.041Search in Google Scholar
Energoklastr (2015). CLEARGAS: Mobile biogas cleaning unit. Retrieved January 2, 2015, from http://www.cleargas.cz/en.pdfSearch in Google Scholar
Evonik Industries (2015). SEPURAN® for biogas upgrading. Retrieved January 2, 2015, from http://www.sepuran.de/product/sepuran/en/product-overview/Pages/default.aspxSearch in Google Scholar
Gu, Y. Y., & Lodge, T. P. (2011). Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block. Macromolecules, 44, 1732-1736, DOI: 10.1021/ma2001838.10.1021/ma2001838Search in Google Scholar
Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G., & Chmielewski, A. G. (2007). Aplication of polyimide membranes for biogas purification and enrichment. Journal of Hazardous Materials, 144, 698-702. DOI: 10.1016/j.jhazmat. 2007.01.098.Search in Google Scholar
Heilman,W., Tammela, V., Meyer, J. A., Stannet, V., & Szwarc, M. (1956). Permeability of polymer films to hydrogen sulfide gas. Industrial & Engeneering Chemistry, 48, 821-824. DOI: 10.1021/ie50556a046.10.1021/ie50556a046Search in Google Scholar
Hudiono, Y. C., Carlisle, T. K., LaFrate, A. L., Gin, D. L., & Noble, R. D. (2011). Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. Journal of Membrane Science, 370, 141-148. DOI: 10.1016/j.memsci.2011.01.012.10.1016/j.memsci.2011.01.012Search in Google Scholar
Husken, D., Visser, T., Wessling, M., & Gaymans, R. J. (2010). CO2 permeation properties of poly(ethylene oxide)-based segmented block copolymers. Journal of Membrane Science, 346, 194-201. DOI: 10.1016/j.memsci.2009.09.034.10.1016/j.memsci.2009.09.034Search in Google Scholar
Kárászová, M., Friess, K., Šípek, M., Jansen, J. C., & Izák, P. (2011). Biogas upgrading for the 21st century. In R. Litonjua, & I. Cvetkovski (Eds.), Biogas: Production, consumption and applications (pp. 91-116). New York, NY, USA: Nova Science Publishers.Search in Google Scholar
Kárászová, M., Vejražka, J., Veselý, V., Friess, K., Randová, A., Hejtmánek, V., Brabec, L., & Izák, P. (2012). A waterswollen thin film composite membrane for effective upgrading of raw biogas to methane. Separation and Purification Technology, 89, 212-216. DOI: 10.1016/j.seppur.2012.01.037.10.1016/j.seppur.2012.01.037Search in Google Scholar
Kárászová, M., Simcik, M., Friess, K., Randová, A., Jansen, J. C., Ruzicka, M. C., Sedláková, Z., & Izak, P. (2013). Comparison of theoretical and experimental mass transfer coefficients of gases in supported ionic liquid membranes. Separation and Purification Technology, 118, 255-263. DOI: 10.1016/j.seppur.2013.06.045.10.1016/j.seppur.2013.06.045Search in Google Scholar
Kárászová, M., Kačírková, M., Friess, K., & Izák, P. (2014). Progress in separation of gases by permeation and liquids by pervaporation using ionic liquids: A review. Separation and Purification Technology, 132, 93-101. DOI: 10.1016/j.seppur.2014.05.008.10.1016/j.seppur.2014.05.008Search in Google Scholar
Kim, H. W., & Park, H. B. (2011). Gas diffusivity, solubility and permeability in polysulfone-poly(ethylene oxide) random copolymer membranes. Journal of Membrane Science, 372, 116-124. DOI: 10.1016/j.memsci.2011.01.053.10.1016/j.memsci.2011.01.053Search in Google Scholar
Krull, F. F., Fritzmann, C., & Melin, T. (2008). Liquid membranes for gas/vapor separations. Journal of Membrane Science, 325, 509-519. DOI: 10.1016/j.memsci.2008.09.018.10.1016/j.memsci.2008.09.018Search in Google Scholar
Kujawska, A., Kujawski, J., Bryjak, M., & Kujawski, W. (2015). ABE fermentation product recovery-A review. Renewable and Sustainable Energy Reviews, 48, 648-661. DOI: 10.1016/j.rser.2015.04.028.10.1016/j.rser.2015.04.028Search in Google Scholar
Lems, R., Langerak, J., & Dirkse, E. H. M. (2014). Next generation biogas upgrading using highly selective gas separation membranes. Showcasing the Poundbury Project. Retrieved January 2014 from http://www.dirkse-milieutechniek.com/dmt/do/download//true/211689/Next_generation_biogas_upgrading.pdfSearch in Google Scholar
Li, Y., & Chung, T. S. (2010). Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal. International Journal of Hydrogen Energy, 35, 10560-10568. DOI: 10.1016/j.ijhydene.2010.07.124.10.1016/j.ijhydene.2010.07.124Search in Google Scholar
Lin, H., & Freeman, B. D. (2004). Gas solubility, diffusivity and permeability in poly(ethylene oxide). Journal of Membrane Science, 239, 105-117. DOI: 10.1016/j.memsci.2003.08.031.10.1016/j.memsci.2003.08.031Search in Google Scholar
Makaruk, A., Miltner, M., & Harasek, M. (2010). Membrane biogas upgrading processes for the production of natural gas substitute. Separation and Purification Technology, 74, 83-92. DOI: 10:1016/j.seppur.2010.05.010.10.1016/j.seppur.2010.05.010Search in Google Scholar
Miltner, M., Makaruk, A., & Harasek, M. (2010). Investigation of the long-term performance of an industrial-scale biogas upgrading plant with grid supply applying gas permeation membranes. Chemical Engineering Transactions, 21, 1213-1218. DOI: 10.3303/cet1021203.Search in Google Scholar
Molino, A., Nanna, F., Ding, Y. Bikson, B., & Braccio, G. (2013a). Biomethane production by anaerobic digestion of organic waste. Fuel, 103, 1003-1009. DOI: 10.1016/j.fuel.2012.07.070.10.1016/j.fuel.2012.07.070Search in Google Scholar
Molino, A., Nanna, F., Migliori, M., Iovane, P., Ding, Y., & Bikson, B. (2013b). Experimental and simulation results for biomethane production using PEEK hollow fiber membrane. Fuel, 112, 489-493. DOI: 10.1016/j.fuel.2013.04.046.10.1016/j.fuel.2013.04.046Search in Google Scholar
Orme, C. J., & Stewart, F. F. (2005). Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes. Journal of Membrane Science, 253, 243-249. DOI: 10.1016/j.memsci.2004.12.034.10.1016/j.memsci.2004.12.034Search in Google Scholar
Ozturk, B., & Demirciyeva, F. (2013). Comparison of biogas upgrading performances of different mixed matrix membranes. Chemical Engineering Journal, 222, 209-217. DOI: 10.1016/j.cej.2013.02.062.10.1016/j.cej.2013.02.062Search in Google Scholar
PermSelect (2015). Methane purification, CO2 removal. Retrieved January 5, 2015, from http://www.permselect.com/ Platform Technology/NG CO2 RemovalSearch in Google Scholar
Poloncarzova, M., Vejrazka, J., Vesely, V., & Izak, P. (2011). Effective purification of biogas by condensing-liquid membrane. Angewandte Chemie International Edition, 50, 669-671. DOI: 10.1002/anie.201004821.10.1002/anie.201004821Search in Google Scholar PubMed
Porter, J. (1970). US Patent No. 3534528. Washington, DC, USA: U.S. Patent and Trademark Office.Search in Google Scholar
Quechulpa-Pérez, P., Pérez-Robles, J. F., Pérez-de Brito, A. F., & Aviliés-Arellano, L. M. (2014). Hybrid membranes prepared by the sol-gel process and based on silica-polyvinyl acetate for methane enrichment from biogas. Journal of Membrane Science & Technology, 4, 128. DOI: 10.4172/2155-9589.1000128.10.4172/2155-9589.1000128Search in Google Scholar
Rasi, S., Veijanen, A., & Rintala, A. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32, 1375-1380. DOI: 10.1016/j.energy.2006.10.018.10.1016/j.energy.2006.10.018Search in Google Scholar
Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques of transformation of biogas to biomethane. Biomass and Bioenergy, 35, 1633-1645. DOI: 10.1016/j.biombioe.2011. 02.033.Search in Google Scholar
Scovazzo, P. (2009). Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized ionic liquid membranes (SILMs) for the purpose of guiding future research. Journal of Membrane Science, 343, 199-211. DOI: 10.1016/j.memsci.2009.07.028.10.1016/j.memsci.2009.07.028Search in Google Scholar
Scholz, M, Melin, T., & Wessling, M. (2013a). Transforming biogas into biomethane using membrane technology. Renewable and Sustainable Energy Reviews, 17, 199-212. DOI: 10.1016/j.rser.2012.08.009.10.1016/j.rser.2012.08.009Search in Google Scholar
Scholz, M., Frank, B., Stockmeier, F., Falss, S., & Wessling, M. (2013b). Techno-economic analysis of hybrid processes for biogas upgrading. Industrial & Engineering Chemistry Research, 52, 16929-16938. DOI: 10.1021/ie402660s.10.1021/ie402660sSearch in Google Scholar
Scholz, M., Alders, M., Lohaus, T., & Wessling, M. (2015). Structural optimization of membrane-based biogas upgrading processes. Journal of Membrane Science, 474, 1-10. DOI: 10.1016/j.memsci.2014.08.032.10.1016/j.memsci.2014.08.032Search in Google Scholar
Schweigkofler, M., & Niessner, R. (2001). Removal of siloxanes in biogas. Journal of Hazardous Materials, 83, 183-196. DOI: 10.1016/s0304-3894(00)00318-6.10.1016/S0304-3894(00)00318-6Search in Google Scholar
Suzuki, H., Tanaka, K., Kita, H., Okamoto, K., Hoshino, H., Yoshinaga, T., & Kusuki, Y. (1998). Preparation of composite hollow fiber membranes of poly(ethylene oxide)- containing polyimide and their CO2/N2 separation properties. Journal of Membrane Science, 146, 31-37. DOI: 10.1016/s0376-7388(98)00081-7.10.1016/S0376-7388(98)00081-7Search in Google Scholar
Tan, X. Y., Tan, S. P., Teo, W. K., & Li, K. (2006). Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271, 59-68. DOI: 10.1016/j.memsci.2005.06.057.10.1016/j.memsci.2005.06.057Search in Google Scholar
Voss, B. A., Bara, J. E., Gin, D. L., & Noble, R. D. (2009). Physically gelled ionic liquids: Solid membrane materials with liquidlike CO2 gas transport. Chemistry of Materials, 21, 3027-3029. DOI: 10.1021/cm900726p.10.1021/cm900726pSearch in Google Scholar
Vu, D. Q., Koros, W. J., & Miller, S. J. (2002). High pressure CO2/CH4 separation using carbon molecular sieves hollow fiber membranes. Industrial & Engineering Chemistry Research, 41, 367-380. DOI: 10.1021/ie010119w.10.1021/ie010119wSearch in Google Scholar
Wellinger, A., & Lindberg, A. (1999). Biogas upgrading and utilization (IEA Bioenergy: Task 24: Energy from biological conversion of organic waste). Winterthur, Switzerland: Sailer Druck.Search in Google Scholar
Wind, J. D., Paul, D. R., & Koros, W. J. (2004). Natural gas permeation in polyimide membranes. Journal of Membrane Science, 228, 227-236. DOI: DOI: 10.1016/j.memsci.2003.10.011.10.1016/j.memsci.2003.10.011Search in Google Scholar
Xie, Z. L., Duond, T., Hoang, M., Nguyen, C., & Bolto, B. (2009). Ammonia removal by sweep gas membrane distillation. Water Research, 43, 1693-1699. DOI: 10.1016/j.watres.2008.12.052. 10.1016/j.watres.2008.12.052Search in Google Scholar PubMed
© Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Gas permeation processes in biogas upgrading: A short review
- Resolution of ketoconazole enantiomers by high-performance liquid chromatography and inclusion complex formation between selector and enantiomers
- Kinetic properties of aryldialkylphosphatase immobilised on chitosan myristic acid nanogel
- Characterization and optimization of mesoporous magnetic nanoparticles for immobilization and enhanced performance of porcine pancreatic lipase
- Electrochemical investigation of NaOH–Na2O–Na2O2–H2O–NaH melt by EMF measurements and cyclic voltammetry
- Use of NMR spectroscopy in the analysis of carnosine and free amino acids in fermented sausages during ripening
- Spray dried calcium gelled arabinoxylan microspheres: A novel carrier for extended drug delivery
- Role of gadolinium(III) complex in improving thermal stability of polythiophene composite
- Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation
- Synthesis, characterization, and biological activities of oxovanadium(IV) and cadmium(II) complexes with reduced Schiff bases derived from N,Nʹ-o-phenylenebis(salicylideneimine)
- Preparation of Lewis acid ionic liquids for one-pot synthesis of benzofuranol from pyrocatechol and 3-chloro-2-methylpropene
- Solvent dependent swelling behaviour of poly(N-vinylcaprolactam) and poly(N-vinylcaprolactam-co-itaconic acid) gels and determination of solubility parameters
- Density, refractive index, and viscosity of binary systems composed of ionic liquids ([Cnmim]Cl, n = 2, 4) and three dipolar aprotic solvents at T = 288.15–318.15 K
- Robust model-based predictive control of exothermic chemical reactor
Articles in the same Issue
- Gas permeation processes in biogas upgrading: A short review
- Resolution of ketoconazole enantiomers by high-performance liquid chromatography and inclusion complex formation between selector and enantiomers
- Kinetic properties of aryldialkylphosphatase immobilised on chitosan myristic acid nanogel
- Characterization and optimization of mesoporous magnetic nanoparticles for immobilization and enhanced performance of porcine pancreatic lipase
- Electrochemical investigation of NaOH–Na2O–Na2O2–H2O–NaH melt by EMF measurements and cyclic voltammetry
- Use of NMR spectroscopy in the analysis of carnosine and free amino acids in fermented sausages during ripening
- Spray dried calcium gelled arabinoxylan microspheres: A novel carrier for extended drug delivery
- Role of gadolinium(III) complex in improving thermal stability of polythiophene composite
- Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation
- Synthesis, characterization, and biological activities of oxovanadium(IV) and cadmium(II) complexes with reduced Schiff bases derived from N,Nʹ-o-phenylenebis(salicylideneimine)
- Preparation of Lewis acid ionic liquids for one-pot synthesis of benzofuranol from pyrocatechol and 3-chloro-2-methylpropene
- Solvent dependent swelling behaviour of poly(N-vinylcaprolactam) and poly(N-vinylcaprolactam-co-itaconic acid) gels and determination of solubility parameters
- Density, refractive index, and viscosity of binary systems composed of ionic liquids ([Cnmim]Cl, n = 2, 4) and three dipolar aprotic solvents at T = 288.15–318.15 K
- Robust model-based predictive control of exothermic chemical reactor