Home Solvent dependent swelling behaviour of poly(N-vinylcaprolactam) and poly(N-vinylcaprolactam-co-itaconic acid) gels and determination of solubility parameters
Article
Licensed
Unlicensed Requires Authentication

Solvent dependent swelling behaviour of poly(N-vinylcaprolactam) and poly(N-vinylcaprolactam-co-itaconic acid) gels and determination of solubility parameters

  • Selva Çavuş EMAIL logo , Elçin Çakal and Lutfullah M. Sevgili
Published/Copyright: July 24, 2015
Become an author with De Gruyter Brill

Abstract

Swelling behaviour of poly(N-vinylcaprolactam) (PVC) and poly(N-vinylcaprolactam-co-itaconic acid) (P(VC-co-IA)) gels was investigated in different solvents (water, ethanol, methanol, isopropyl alcohol (IPA), chloroform, toluene, acetone) and in binary solvent mixtures (ethanol/chloroform, ethanol/methanol, IPA/chloroform, ethanol/water, IPA/water). Gels were synthesised in ethanol by the free radical cross-linking polymerisation method at 60°C for 24 h in the presence of azobis( isobutyronitrile) and allyl methacrylate as the initiator and cross-linker, respectively. And also, ethanol/distilled water mixture (φr = 4 : 1) was used as the synthesis medium to determine its effect on the swelling of gels. It was found that the presence of water in the synthesis medium significantly affected the equilibrium swelling value (ESV) and the swelling tendency of gels both in solvents and in solvent mixtures. All gels synthesised in ethanol showed the highest swelling in chloroform. The gels synthesised in the ethanol/water mixture displayed different swelling behaviour. In this case, while chloroform was still valid for maximum swelling of PVC, P(VC-co-IA) had the highest swelling in methanol. Solubility parameters of gels were predicted by the van Krevelen-Hoftyzer (VKH) and Hoy methods (group contribution methods) and theoretical calculations verified the experimental swelling order.

References

Adamska, K., & Voelkel, A. (2006). Hansen solubility parameters for polyethylene glycols by inverse gas chromatography. Journal of Chromatography A, 1132, 260-267. DOI: 10.1016/j.chroma.2006.07.066.10.1016/j.chroma.2006.07.066Search in Google Scholar

Bajpai, S. K., & Sonkusley, J. (2003). Dynamic release of riboflavin from a colon-targeted delivery device: an in vitro study. Reactive & Functional Polymers, 55, 197-210. DOI: 10.1016/s1381-5148(02)00247-x.10.1016/S1381-5148(02)00247-XSearch in Google Scholar

Boyko, V. B. (2004). N-Vinylcaprolactam based bulk and microgels: Synthesis, structural formation and characterization by dynamic light scattering. Doctor rerum naturalium dissertation, Faculty of Mathematic and Natural Sciences, Dresden University of Technology, Dresden, Germany.Search in Google Scholar

Brandrup, J., & Immergut, E. H. (Eds.) (1975). Polymer handbook (2nd ed.). New York, NY, USA: Wiley.Search in Google Scholar

Bustamante, P., Navarro-Lupion, J., & Escalera, B. (2005). A new method to determine the partial solubility parameters of polymers from intrinsic viscosity. European Journal of Pharmaceutical Sciences, 24, 229-237. DOI: 10.1016/j.ejps.2004.10.012.10.1016/j.ejps.2004.10.012Search in Google Scholar

Cheng, S. C., Feng, W., Pashikin, I. I., Yuan, L. H., Deng, H. C., & Zhou, Y. (2002). Radiation polymerization of thermosensitive poly (N-vinylcaprolactam). Radiation Physics and Chemistry, 63, 517-519. DOI: 10.1016/s0969-806x(01)00638-7.10.1016/S0969-806X(01)00638-7Search in Google Scholar

Çakal, E., & C,avu,s, S. (2010). Novel poly(N-vinylcaprolactamco-2-(diethylamino)ethyl methacrylate) gels: Characterization and detailed investigation on their stimuli-sensitive behaviors and network structure. Industrial & Engineering Chemistry Research, 49, 11741-11751. DOI: 10.1021/ie1007097.10.1021/ie1007097Search in Google Scholar

Çavuş S., & Çakal, E. (2012). Synthesis and characterization of novel poly(N-vinylcaprolactam-co-itaconic acid) gels and analysis of pH and temperature sensitivity. Industrial & Engineering Chemistry Research, 51, 1218-1226. DOI: 10.1021/ie2008746.10.1021/ie2008746Search in Google Scholar

Çaykara, T., Özyürek, C., Kanto˘glu, Ö., & Güven, O. (2002). Influence of gel composition on the solubility parameter of poly(2-hydroxyethyl methacrylate-itaconic acid) hydrogels. Journal of Polymer Science Part B: Polymer Physics, 40, 1995-2003. DOI: 10.1002/polb.10262.10.1002/polb.10262Search in Google Scholar

Dalkas, G., Pagonis, K., & Bokias, G. (2006). Control of the lower critical solution temperature-type cononsolvency properties of poly(N-isopropylacrylamide) in water-dioxane mixtures through copolymerisation with acrylamide. Polymer, 47, 243-248. DOI: 10.1016/j.polymer.2005.10.115.10.1016/j.polymer.2005.10.115Search in Google Scholar

El-Hamshary, H. (2007). Synthesis and water sorption studies of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels. European Polymer Journal, 43, 4830-4838. DOI: 10.1016/j.eurpolymj.2007.08.018.10.1016/j.eurpolymj.2007.08.018Search in Google Scholar

Eroğlu, M. S., Baysal, B. M., & Güven, O. (1997). Determination of solubility parameters of poly(epichlorohydrin) and poly(glycidyl azide) networks. Polymer, 38, 1945-1947. DOI: 10.1016/s0032-3861(96)00720-3.10.1016/S0032-3861(96)00720-3Search in Google Scholar

Hansen, C. M. (1967). The three dimensional solubility parameter and solvent diffusion coefficient: Their importance in surface coating formulation. PhD. thesis, Technical University of Denmark, Kgs. Lyngby. Copenhagen, Denmark: Danish Technical Press.Search in Google Scholar

Hansen, C. M. (2007). Hansen solubility parameters: A user’s handbook (2nd ed.). Boca Raton, FL, USA: CRC Press.10.1201/9781420006834Search in Google Scholar

Hildebrand, J. H., & Scott, R. L. (1950). The solubility of nonelectrolytes (3rd ed.). New York, NY, USA: Reinhold.Search in Google Scholar

Hore, M. J. A., Hammouda, B., Li, Y., & Cheng, H. (2013). Co-nonsolvency of poly(n-isopropylacrylamide) in deuterated water/ethanol mixtures. Macromolecules, 46, 7894-7901. DOI: 10.1021/ma401665h.10.1021/ma401665hSearch in Google Scholar

Hoy, K. L. (1970). New values of the solubility parameters from vapor pressure data. Journal of Paint Technology, 42, 76-118.Search in Google Scholar

Jagur-Grodzinski, J. (2010). Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies, 21, 27-47. DOI: 10.1002/pat.1504.10.1002/pat.1504Search in Google Scholar

Jun, L., Bochu, W., & Yazhou, W. (2006). Thermo-sensitive polymers for controlled-release drug delivery systems. International Journal of Pharmacology, 2, 513-519. DOI: 10.3923/ijp.2006.513.519.10.3923/ijp.2006.513.519Search in Google Scholar

Just, S., Sievert, F., Thommes, M., & Breitkreutz, J. (2013). Improved group contribution parameter set for the application of solubility parameters to melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 85, 1191-1199. DOI: 10.1016/j.ejpb.2013.04.006.10.1016/j.ejpb.2013.04.006Search in Google Scholar

Katime, I., Velada, J. L., Novoa, R., Diaz de Apodaca, E., Puig, J., & Mendizabal, E. (1996). Swelling kinetics of poly(acrylamide)/poly(mono-n-alkyl itaconates) hydrogels. Polymer International, 40, 281-286. DOI: 10.1002/(SICI)10 97-0126(199608)40:4<281::AID-PI555>3.0.CO;2-H.Search in Google Scholar

King, M. B. (1969). Phase equilibrium in mixtures. Oxford,UK: Pergamon Press.Search in Google Scholar

Krušić, M. K., Ilić, M., & Filipović, J. (2009). Swelling behaviour and paracetamol release from poly(N-isopropylacrylamide- itaconic acid) hydrogels. Polymer Bulletin, 63, 197-211. DOI: 10.1007/s00289-009-0086-3.10.1007/s00289-009-0086-3Search in Google Scholar

Mark, J. E. (Ed.) (2007). Physical properties of polymers handbook (2nd ed.). New York, NY, USA: Springer.10.1007/978-0-387-69002-5Search in Google Scholar

Meaurio, E., Cesteros, L. C., Katime, I. (1998). Study of the solvent role on complexation in systems poly(mono n-alkyl itaconate)/tertiary polyamide. Polymer, 39, 379-385. DOI: 10.1016/s0032-3861(97)00271-1.10.1016/S0032-3861(97)00271-1Search in Google Scholar

Nasimova, I. R., Makhaeva, E. E., & Khokhlov, A. R. (2001). Poly(N-vinylcaprolactam) gel/organic dye complexes as sensors for metal ions in aqueous salt solutions. Journal of Applied Polymer Science, 81, 3238-3243. DOI: 10.1002/app.1778.10.1002/app.1778Search in Google Scholar

Nurkeeva, Z. S.,Mun, G. A., Khutoryanskiy, V. V., Kan, V. A., Zotov, A. A., & Shaikhutdinov, E. M. (2000). Interactions of linear and cross-linked polyacrylic acid with polyvinyl ether of ethyleneglycol in some aliphatic alcohols. Polymer Bulletin, 44, 563-568. DOI: 10.1007/s002890070079.10.1007/s002890070079Search in Google Scholar

Osada, Y., Gong, J. P., & Tanaka, Y. (2004). Polymer gels. Journal of Macromolecular Science, Part C: Polymer Reviews, 44, 87-112. DOI: 10.1081/mc-120027935.10.1081/MC-120027935Search in Google Scholar

Özdemir, C., & G¨uner, A. (2007). Solubility profiles of poly(ethylene glycol)/solvent systems, I: Qualitative comparison of solubility parameter approaches. European Polymer Journal, 43, 3068-3093. DOI: 10.1016/j.eurpolymj.2007.02.022.10.1016/j.eurpolymj.2007.02.022Search in Google Scholar

Ozmen, M. M., & Okay, O. (2003). Swelling behavior of strong polyelectrolyte poly(N-t-butylacrylamide-co-acrylamide) hydrogels. European Polymer Journal, 39, 877-886. DOI: 10.1016/s0014-3057(02)00356-7.10.1016/S0014-3057(02)00356-7Search in Google Scholar

Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). The properties of gases and liquids (5th ed.). New York, NY, USA: McGraw-Hill.Search in Google Scholar

Price, G. J., & Shillcock, I. M. (2002). Inverse gas chromatographic measurement of solubility parameters in liquid crystalline systems. Journal of Chromatography A, 964, 199-204. DOI: 10.1016/s0021-9673(02)00651-9.10.1016/S0021-9673(02)00651-9Search in Google Scholar

Ravindra, R., Krovvidi, K. R., & Khan, A. A. (1998). Solubility parameter of chitin and chitosan. Carbohydrate Polymers, 36, 121-127. DOI: 10.1016/s0144-8617(98)00020-4.10.1016/S0144-8617(98)00020-4Search in Google Scholar

Schenderlein, S., L¨uck, M., & M¨uller, B. W. (2004). Partial solubility parameters of poly(D,L-lactide-co-glycolide). International Journal of Pharmaceutics, 286, 19-26. DOI: 10.1016/j.ijpharm.2004.07.034.10.1016/j.ijpharm.2004.07.034Search in Google Scholar PubMed

Schmaljohann, D. (2006). Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews, 58, 1655-1670. DOI: 10.1016/j.addr.2006.09.020.10.1016/j.addr.2006.09.020Search in Google Scholar PubMed

Sevgili, L. M., Toprak, S., & C,avu,s, S. (2015). Swelling of N-vinylcaprolactam-dodecyl methacrylate gel in {heptane + toluene} mixtures. Chemical Papers, 69, 668-678. DOI: 10.1515/chempap-2015-0073.10.1515/chempap-2015-0073Search in Google Scholar

Shah, S., Pal, A., Gude, R., & Devi, S. (2010). Synthesis and characterization of thermo-responsive copolymeric nanoparticles of poly(methyl methacrylate-co-N-vinylcaprolactam). European Polymer Journal, 46, 958-967. DOI: 10.1016/j. eurpolymj.2010.01.005.Search in Google Scholar

Small, P. A. (1953). Some factors affecting the solubility of polymers. Journal of Applied Chemistry, 3, 71-80. DOI: 10.1002/jctb.5010030205.10.1002/jctb.5010030205Search in Google Scholar

Tang, Y., Zhang, S., Wang, M., Zhu, J., Sun, T., & Jiang, G. (2014). A glucose-based diblock copolymer: synthesis, characterization and its injectable/temperature-sensitive behaviors. Journal of Polymer Research, 21, 390. DOI: 10.1007/s10965-014-0390-y.10.1007/s10965-014-0390-ySearch in Google Scholar

Thorne, J. B., Vine, G. J., & Snowden, M. J. (2011). Microgel applications and commercial considerations. Colloid and Polymer Science, 289, 625-646. DOI: 10.1007/s00396-010-2369-5.10.1007/s00396-010-2369-5Search in Google Scholar

Tomić, S. L., & Filipović, J. M. (2004). Synthesis and characterization of complexes between poly(itaconic acid) and poly(ethylene glycol). Polymer Bulletin, 52, 355-364. DOI: 10.1007/s00289-004-0298-5.10.1007/s00289-004-0298-5Search in Google Scholar

Troy, D. B. (Ed.) (2006). Remington: The science and practice of pharmacy (21st ed.). Philadelphia, PA, USA: Lippincott Williams & Wilkins.Search in Google Scholar

van Krevelen, D. W., & te Nijenhuis, K. (2009). Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contribution (4th ed.). Amsterdam, The Netherlands: Elsevier.Search in Google Scholar

Verheyen, S., Augustijns, P., Kinget, R., & Van den Mooter, G. (2001). Determination of partial solubility parameters of five benzodiazepines in individual solvents. International Journal of Pharmaceutics, 228, 199-207. DOI: 10.1016/s0378-5173(01)00838-9.10.1016/S0378-5173(01)00838-9Search in Google Scholar

Zafar, Z. I., Malana, M. A., Pervez, H., Shad, A., & Momma, K. (2008). Synthesis and swelling kinetics of a cross-linked pH-sensitive ternary copolymer gel system. Polymer(Korea), 32, 219-229.Search in Google Scholar

Received: 2014-11-15
Revised: 2015-4-6
Accepted: 2015-4-16
Published Online: 2015-7-24
Published in Print: 2015-10-1

© Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Gas permeation processes in biogas upgrading: A short review
  2. Resolution of ketoconazole enantiomers by high-performance liquid chromatography and inclusion complex formation between selector and enantiomers
  3. Kinetic properties of aryldialkylphosphatase immobilised on chitosan myristic acid nanogel
  4. Characterization and optimization of mesoporous magnetic nanoparticles for immobilization and enhanced performance of porcine pancreatic lipase
  5. Electrochemical investigation of NaOH–Na2O–Na2O2–H2O–NaH melt by EMF measurements and cyclic voltammetry
  6. Use of NMR spectroscopy in the analysis of carnosine and free amino acids in fermented sausages during ripening
  7. Spray dried calcium gelled arabinoxylan microspheres: A novel carrier for extended drug delivery
  8. Role of gadolinium(III) complex in improving thermal stability of polythiophene composite
  9. Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation
  10. Synthesis, characterization, and biological activities of oxovanadium(IV) and cadmium(II) complexes with reduced Schiff bases derived from N,Nʹ-o-phenylenebis(salicylideneimine)
  11. Preparation of Lewis acid ionic liquids for one-pot synthesis of benzofuranol from pyrocatechol and 3-chloro-2-methylpropene
  12. Solvent dependent swelling behaviour of poly(N-vinylcaprolactam) and poly(N-vinylcaprolactam-co-itaconic acid) gels and determination of solubility parameters
  13. Density, refractive index, and viscosity of binary systems composed of ionic liquids ([Cnmim]Cl, n = 2, 4) and three dipolar aprotic solvents at T = 288.15–318.15 K
  14. Robust model-based predictive control of exothermic chemical reactor
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0153/html
Scroll to top button