Home Use of NMR spectroscopy in the analysis of carnosine and free amino acids in fermented sausages during ripening
Article
Licensed
Unlicensed Requires Authentication

Use of NMR spectroscopy in the analysis of carnosine and free amino acids in fermented sausages during ripening

  • Marcel Mati EMAIL logo , Ladislav Staruch and Michal Šoral
Published/Copyright: July 24, 2015
Become an author with De Gruyter Brill

Abstract

Quantitative changes of carnosine and free amino acids in high-fat (43-50 mass %) fermented sausages during ripening were analysed using a 600 MHz VNMRS NMR spectrometer. Seven free amino acids were identified in the samples and a relatively high content of carnosine was observed in the final stage of ripening. The NMR method for the determination of free amino acids and carnosine content applied in this work has been used for the first time and it has proven to be suitable for the analysis of fermented sausages.

References

Agrafiotou, P., Sotiropoulos, S., & Pappa-Louisi, A. (2009). Direct RP-HPLC determination of underivatized amino acids with online dual UV absorbance, fluorescence, and multiple electrochemical detection. Journal of Separation Science, 32, 949-954. DOI: 10.1002/jssc.200800636.10.1002/jssc.200800636Search in Google Scholar PubMed

Aro Aro, J. M., Nyam-Osor, P., Tsuji, K., Shimada, K. I., Fukushima, M., & Sekikawa, M. (2010). The effect of starter cultures on proteolytic changes and amino acid content in fermented sausages. Food Chemistry, 119, 279-285. DOI: 10.1016/j.foodchem.2009.06.025.10.1016/j.foodchem.2009.06.025Search in Google Scholar

Belton, P. S., Delgadillo, I., Holmes, E., Nicholls, A., Nicholson, J. K., & Spraul, M. (1996). Use of high-field 1H NMR spectroscopy for the analysis of liquid foods. Journal of Agricultural and Food Chemistry, 44, 1483-1487. DOI: 10.1021/jf950640z.10.1021/jf950640zSearch in Google Scholar

Brescia, M. A., Monfreda, M., Buccolieri, A., & Carrino, C. (2005). Characterisation of the geographical origin of buffalo milk and mozzarella cheese by means of analytical and spectroscopic determinations. Food Chemistry, 89, 139-147. DOI: 10.1016/j.foodchem.2004.02.016.10.1016/j.foodchem.2004.02.016Search in Google Scholar

Candogan, K., Wardlaw, F. B., & Acton, J. C. (2009). Effect of starter culture on proteolytic changes during processing of fermented beef sausages. Food Chemistry, 116, 731-737. DOI: 10.1016/j.foodchem.2009.03.065.10.1016/j.foodchem.2009.03.065Search in Google Scholar

Casaburi, A., Di Monaco, R., Cavella, S., Toldrá, F., Ercolini, D., & Villani, F. (2008). Proteolytic and lipolytic starter cultures and their effect on traditional fermented sausages ripening and sensory traits. Food Microbiology, 25, 335-347. DOI: 10.1016/j.fm.2007.10.006.10.1016/j.fm.2007.10.006Search in Google Scholar PubMed

Chez,M. G., Buchanan, C. P., Aimonovitch,M. C., Becker,M., Schaefer, K., Black, C., & Komen, J. (2002). Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. Journal of Child Neurology, 17, 833-837. DOI: 10.1177/08830738020170111 501.Search in Google Scholar

Enzonga, J., Varravaddheay, O. M., Couderc, F., Boutonnet, A., Poinsot, V., Tsieri, M. M., Silou, T., & Bouajila, J. (2013). Determination of free amino acids in African gourd seed milks by capillary electrophoresis with light-emitting diode induced fluorescence and laser-induced fluorescence detection. Electrophoresis, 34, 2632-2638. DOI: 10.1002/elps.201300136.10.1002/elps.201300136Search in Google Scholar PubMed

Gilbert, E. R., Wong, E. A., & Webb, K. E., Jr. (2008). Peptide absorption and utilization: Implications for animal nutrition and health. Journal of Animal Science, 86, 2135-2155. DOI: 10.2527/jas.2007-0826.10.2527/jas.2007-0826Search in Google Scholar PubMed

Hu, F. Y., Furihata, K., Kato, Y., & Tanokura, M. (2007). Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy. Journal of Agricultural and Food Chemistry, 55, 4307-4311. DOI: 10.1021/jf062803x.10.1021/jf062803xSearch in Google Scholar PubMed

Huang, Y., Duan, J. P., Chen, H. Q., Chen, M., & Chen, G. N. (2005). Separation and determination of carnosine-related peptides using capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis, 26, 593-599. DOI: 10.1002/elps.200406130.10.1002/elps.200406130Search in Google Scholar PubMed

Jastrz˛ebska, A., & Szłyk, E. (2009). Application of 31P NMRfor added polyphosphate determination in pork meat. Chemical Papers, 63, 414-419. DOI: 10.2478/s11696-009-0042-6.10.2478/s11696-009-0042-6Search in Google Scholar

Khama-Murad, A. Kh., Mokrushin, A. A., & Pavlinova, L. I. (2011). Neuroprotective properties of L-carnosine in the brain slices exposed to autoblood in the hemorrhagic stroke model in vitro. Regulatory Peptides, 167, 65-69. DOI: 10.1016/j.regpep.2010.11.007.10.1016/j.regpep.2010.11.007Search in Google Scholar PubMed

Leggio, A., Belsito, E. L., De Marco, R., Liguori, A., Siciliano, C., & Spinella, M. (2012). Simultaneous extraction and derivatization of amino acids and free fatty acids in meat products. Journal of Chromatography A, 1241, 96-102. DOI: 10.1016/j.chroma.2012.04.029.10.1016/j.chroma.2012.04.029Search in Google Scholar PubMed

Li, Y. F., He, R. R., Tsoi, B., Li, X. D., Li, W. X., Abe, K., & Kurihara, H. (2012). Anti-stress effects of carnosine on restraint-evoked immunocompromise in mice through spleen lymphocyte number maintenance. PLoS One, 7, e33190. DOI: 10.1371/journal.pone.0033190.10.1371/journal.pone.0033190Search in Google Scholar PubMed PubMed Central

Mannina, L., Sobolev, A. P., & Viel, S. (2012). Liquid state 1H high field NMR in food analysis. Progress in Nuclear Magnetic Resonance Spectroscopy, 66, 1-39. DOI: 10.1016/j.pnmrs.2012.02.001.10.1016/j.pnmrs.2012.02.001Search in Google Scholar PubMed

Maršálek, P., Farková, M., & Havel, J. (2002). Quantitative MALDI-TOFMS analysis of amino acids applying soft modeling methods. Chemical Papers, 56, 188-193.Search in Google Scholar

Mora, L., Sentandreu, M. Á., & Toldrá, F. (2008). Contents of creatine, creatinine and carnosine in porcine muscles of different metabolic types. Meat Science, 79, 709-715. DOI: 10.1016/j.meatsci.2007.11.002.10.1016/j.meatsci.2007.11.002Search in Google Scholar PubMed

Møller, S. M., Gunvig, A., & Bertram, H. Ch. (2010). Effect of starter culture and fermentation temperature on water mobility and distribution in fermented sausages and correlation to microbial safety studied by nuclear magnetic resonance relaxometry. Meat Science, 86, 462-467. DOI: 10.1016/j.meatsci.2010.05.035.10.1016/j.meatsci.2010.05.035Search in Google Scholar PubMed

Nardiello, D., & Cataldi, T. R. I. (2004). Determination of carnosine in feed and meat by high-performance anionexchange chromatography with integrated pulsed amperometric detection. Journal of Chromatography A, 1035, 285-289. DOI: 10.1016/j.chroma.2004.02.066.10.1016/j.chroma.2004.02.066Search in Google Scholar PubMed

Ohsawa, M., Mutoh, J., Asato, M., Yamamoto, S., Ono, H., Hisa, H., & Kamei, J. (2012). Carnosine has antinociceptive properties in the inflammation-induced nociceptive response in mice. European Journal of Pharmacology, 682, 56-61. DOI: 10.1016/j.ejphar.2012.02.005.10.1016/j.ejphar.2012.02.005Search in Google Scholar PubMed

Pedersen, H. T., Munck, L., & Engelsen, S. B. (2000). Low-field 1H nuclear magnetic resonance and chemometrics combined for simultaneous determination of water, oil, and protein contents in oilseeds. Journal of the American Oil Chemists’ Society, 77, 1069-1077. DOI: 10.1007/s11746-000-0168-4.10.1007/s11746-000-0168-4Search in Google Scholar

Peiretti, P. G., Medana, C., Visentin, S., Giancotti, V., Zunino, V., & Meineri, G. (2011). Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chemistry, 126, 1939-1947. DOI: 10.1016/j.foodchem.2010.12.036.10.1016/j.foodchem.2010.12.036Search in Google Scholar PubMed

Purchas, R. W., & Busboom, J. R. (2005). The effect of production system and age on levels of iron, taurine, carnosine, coenzyme Q10, and creatine in beef muscles and liver. Meat Science, 70, 589-596. DOI: 10.1016/j.meatsci.2005.02.008.10.1016/j.meatsci.2005.02.008Search in Google Scholar PubMed

Ritota, M., Casciani, L., Failla, S., & Valentini, M. (2012). HRMAS-NMR spectroscopy and multivariate analysis meat characterisation. Meat Science, 92, 754-761. DOI: 10.1016/j. meatsci.2012.06.034.Search in Google Scholar

San Gabriel, A., & Uneyama, H. (2013). Amino acid sensing in the gastrointestinal tract. Amino Acids, 45, 451-461. DOI: 10.1007/s00726-012-1371-2.10.1007/s00726-012-1371-2Search in Google Scholar PubMed

Shintu, L., Caldarelli, S., & Franke, B. M. (2007). Pre-selection of potential molecular markers for the geographic origin of dried beef by HR-MAS NMR spectroscopy. Meat Science, 76, 700-707. DOI: 10.1016/j.meatsci.2007.02.010.10.1016/j.meatsci.2007.02.010Search in Google Scholar PubMed

Siciliano, C., Belsito, E., De Marco, R., Di Gioia, M. L., Leggio, A., & Liguori, A. (2013). Quantitative determination of fatty acid chain composition in pork meat products by high resolution 1H NMR spectroscopy. Food Chemistry, 136, 546-554. DOI: 10.1016/j.foodchem.2012.08.058.10.1016/j.foodchem.2012.08.058Search in Google Scholar PubMed

Sobolev, A. P., Brosio, E., Gianferri, R., & Segre, A. L. (2005). Metabolic profile of lettuce leaves by high-field NMR spectra. Magnetic Resonance in Chemistry, 43, 625-638. DOI: 10.1002/mrc.1618.10.1002/mrc.1618Search in Google Scholar PubMed

Stefanova, R., Vasilev, N. V., & Vassilev, N. G. (2011). 1H-NMR spectroscopy as an alternative tool for the detection of γ-ray irradiated meat. Food Analytical Methods, 4, 399-403. DOI: 10.1007/s12161-010-9183-z.10.1007/s12161-010-9183-zSearch in Google Scholar

Tsuruta, Y., Maruyama, K., Inoue, H., Kosha, K., Date, Y., Okamura, N., Eto, S., & Kojima, E. (2009). Sensitive determination of carnosine in urine by high-performance liquid chromatography using 4-(5,6-dimethoxy-2-phthalimidinyl)-2 methoxyphenylsulfonyl chloride as a fluorescent labeling reagent. Journal of Chromatography B, 878, 327-332. DOI: 10.1016/j.jchromb.2009.11.038.10.1016/j.jchromb.2009.11.038Search in Google Scholar PubMed

Vilén, E. M., Lundqvist, L. C. E., Jouanneau, D., Helbert, W., & Sandstr¨om, C. (2010). NMR study on hydroxy protons of κ- and κ/μ-hybrid carrageenan oligosaccharides: Experimental evidence of hydrogen bonding and chemical exchange interactions in κ/μ oligosaccharides. Biomacromolecules, 11, 3487-3494. DOI: 10.1021/bm100994x.10.1021/bm100994xSearch in Google Scholar PubMed

Wang, J. P., Yang, Z. T., Liu, C., He, Y. H., & Zhao, S. S. (2013). L-carnosine inhibits neuronal cell apoptosis through signal transducer and activator of transcription 3 signaling pathway after acute focal cerebral ischemia. Brain Research, 1507, 125-133. DOI: 10.1016/j.brainres.2013.02.032.10.1016/j.brainres.2013.02.032Search in Google Scholar PubMed

Wu, G. Y., Jaeger, L. A., Bazer, F. W., & Rhoads, J. M. (2004). Arginine deficiency in preterm infants: Biochemical mechanisms and nutritional implications. The Journal of Nutritional Biochemistry, 15, 442-451. DOI: 10.1016/j.jnutbio.2003.11.010.10.1016/j.jnutbio.2003.11.010Search in Google Scholar PubMed

Young, J. F., Therkildsen, M., Ekstrand, B., Che, B. N., Larsen, M. K., Oksbjerg, N., & Stagsted, J. (2013). Novel aspects of health promoting compounds in meat. Meat Science, 95, 904-911. DOI: 10.1016/j.meatsci.2013.04.036.10.1016/j.meatsci.2013.04.036Search in Google Scholar PubMed

Zhang, H., Wang, Z. Y., Yang, X., Zhao, H. T., Zhang, Y. C., Dong, A. J., Jing, J., & Wang, J. (2014). Determination of free amino acids and 18 elements in freeze-dried strawberry and blueberry fruit using an Amino Acid Analyzer and ICPMS with micro-wave digestion. Food Chemistry, 147, 189-194. DOI: 10.1016/j.foodchem.2013.09.118.10.1016/j.foodchem.2013.09.118Search in Google Scholar PubMed

Zhao, M., Ma, Y., Dai, L. L., Zhang, D. L., Li, J. H., Yuan, W. X., Li, Y. L., & Zhou, H. J. (2013). A high-performance liquid chromatographic method for simultaneous determination of 21 free amino acids in tea. Food Analytical Methods, 6, 69-75. DOI: 10.1007/s12161-012-9408-410.1007/s12161-012-9408-4Search in Google Scholar

Received: 2015-1-31
Revised: 2015-5-1
Accepted: 2015-5-5
Published Online: 2015-7-24
Published in Print: 2015-10-1

© Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Gas permeation processes in biogas upgrading: A short review
  2. Resolution of ketoconazole enantiomers by high-performance liquid chromatography and inclusion complex formation between selector and enantiomers
  3. Kinetic properties of aryldialkylphosphatase immobilised on chitosan myristic acid nanogel
  4. Characterization and optimization of mesoporous magnetic nanoparticles for immobilization and enhanced performance of porcine pancreatic lipase
  5. Electrochemical investigation of NaOH–Na2O–Na2O2–H2O–NaH melt by EMF measurements and cyclic voltammetry
  6. Use of NMR spectroscopy in the analysis of carnosine and free amino acids in fermented sausages during ripening
  7. Spray dried calcium gelled arabinoxylan microspheres: A novel carrier for extended drug delivery
  8. Role of gadolinium(III) complex in improving thermal stability of polythiophene composite
  9. Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation
  10. Synthesis, characterization, and biological activities of oxovanadium(IV) and cadmium(II) complexes with reduced Schiff bases derived from N,Nʹ-o-phenylenebis(salicylideneimine)
  11. Preparation of Lewis acid ionic liquids for one-pot synthesis of benzofuranol from pyrocatechol and 3-chloro-2-methylpropene
  12. Solvent dependent swelling behaviour of poly(N-vinylcaprolactam) and poly(N-vinylcaprolactam-co-itaconic acid) gels and determination of solubility parameters
  13. Density, refractive index, and viscosity of binary systems composed of ionic liquids ([Cnmim]Cl, n = 2, 4) and three dipolar aprotic solvents at T = 288.15–318.15 K
  14. Robust model-based predictive control of exothermic chemical reactor
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0148/html
Scroll to top button