Home Life Sciences Blebbistatin induces chondrogenesis of single mesenchymal cells via PI3K/PDK1/mTOR/p70S6K pathway
Article
Licensed
Unlicensed Requires Authentication

Blebbistatin induces chondrogenesis of single mesenchymal cells via PI3K/PDK1/mTOR/p70S6K pathway

  • Hyoin Kim , Dong Hyun Kim , Bohyeon Jeong , Ju-Hee Kim , Sun-Ryung Lee and Jong Kyung Sonn EMAIL logo
Published/Copyright: June 30, 2017
Become an author with De Gruyter Brill

Abstract

Rearrangement of the actin cytoskeleton plays an inductive role in chondrogenic differentiation. Our previous study showed that blebbistatin, an inhibitor of myosin II, removes actin stress fibres and induces chondrogenesis of mesenchymal cells in monolayer cultures. In the present study, we investigated signalling pathways implicated in the induction of chondrogenesis by dissolving actin stress fibres after blebbistatin treatment. Blebbistatin increased the activity of phosphoinositide 3-kinase (PI3K). Inhibition of PI3K with LY294002 blocked blebbistatin-induced chondrogenesis without affecting blebbistatin-induced reorganization of actin filaments. Blebbistatin also upregulated the phosphorylation of phosphoinositide-dependent protein kinase 1 (PDK1), and inhibition of PDK1 with GSK2334470 suppressed blebbistatin-induced chondrogenesis, indicating that removal of actin stress fibres by blebbistatin induced chondrogenesis by activating PI3K/PDK1. Although inhibition of Akt activity by Akt inhibitor IV blocked blebbistatin-induced chondrogenesis, phosphorylation of Akt was not affected by blebbistatin. Blebbistatin increased the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and p70 ribosomal protein S6 kinase (p70S6K). Inhibition of mTOR with rapamycin almost completely abolished the phosphorylation of p70S6K. Inhibition of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) with pp242 diminished phosphorylation of Akt at Ser473, whereas inhibition of mTORC1 with rapamycin did not. However, blebbistatin did not affect the phosphorylation of mTOR at Ser2481. Taken together, the present results suggest that blebbistatin induces chondrogenesis by activating the PI3K/PDK1/mTOR/p70S6K pathway. Our data also indicate that Akt activity is essential for chondrogenesis but is regulated by mTORC2, which is independent of blebbistatin treatment.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2009749).

References

Apsel B., Blair J.A., Gonzalez B., Nazif T.M., Feldman M.E., Aizenstein B., Hoffman R., Williams R.L., Shokat K.M. & Knight Z.A. 2008. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol. 4: 691–699.10.1038/nchembio.117Search in Google Scholar PubMed PubMed Central

Avruch J., Hara K., Lin Y., Liu M., Long X., Ortiz-Vega S. & Yonezawa K. 2006. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 25: 6361–6372.10.1038/sj.onc.1209882Search in Google Scholar PubMed

Bang O.S., Kim E.J., Chung J.G., Lee S.R., Park T.K. & Kang S.S. 2000. Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells. Biochem. Biophys. Res. Commun. 278: 522–529.10.1006/bbrc.2000.3831Search in Google Scholar PubMed

Bertrand L., Horman S., Beauloye C. & Vanoverschelde J.L. 2008. Insulin signalling in the heart. Cardiovasc. Res. 79: 238–248.10.1093/cvr/cvn093Search in Google Scholar PubMed

Berven L.A. & Crouch M.F. 2000. Cellular function of p70S6K: a role in regulating cell motility. Immunol. Cell Biol. 78: 447–451.10.1046/j.1440-1711.2000.00928.xSearch in Google Scholar PubMed

Cantley L.C. 2002. The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.10.1126/science.296.5573.1655Search in Google Scholar PubMed

Copp J., Manning G. & Hunter T. 2009. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 69: 1821–1827.10.1158/0008-5472.CAN-08-3014Search in Google Scholar PubMed PubMed Central

Corradetti M.N. & Guan K.L. 2006. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25: 6347–6360.10.1038/sj.onc.1209885Search in Google Scholar PubMed

Finlay D.K., Rosenzweig E., Sinclair L.V., Feijoo-Carnero C., Hukelmann J.L., Rolf J., Panteleyev A.A., Okkenhaug K. & Cantrell D.A. 2012. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209: 2441–2453.10.1084/jem.20112607Search in Google Scholar PubMed PubMed Central

Fujita T., Fukuyama R., Enomoto H. & Komori T. 2004. Dexamethasone inhibits insulin-induced chondrogenesis of ATDC5 cells by preventing PI3K-Akt signaling and DNA binding of Runx2. J. Cell. Biochem. 93: 374–383.10.1002/jcb.20192Search in Google Scholar PubMed

Gayer C.P., Chaturvedi L.S., Wang S., Craig D.H., Flanigan T. & Basson M.D. 2009. Strain-induced proliferation requires thse phosphatidylinositol 3-kinase/AKT/glycogen synthase kinase pathway. J. Biol. Chem. 284: 2001–2011.10.1074/jbc.M804576200Search in Google Scholar

Greiwe J.S., Kwon G., McDaniel M.L. & Semenkovich C.F. 2001. Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 281: E466–E471.10.1152/ajpendo.2001.281.3.E466Search in Google Scholar

Guan Y., Yang X., Yang W., Charbonneau C. & Chen Q. 2014. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development. FASEB J. 28: 4470–4481.10.1096/fj.14-252783Search in Google Scholar

Hay N. & Sonenberg N. 2004. Upstream and downstream of mTOR. Genes Dev. 18: 1926–1945.10.1101/gad.1212704Search in Google Scholar

Hidaka K., Kanematsu T., Takeuchi H., Nakata M., Kikkawa U. & Hirata M. 2001. Involvement of the phosphoinositide 3-kinase/protein kinase B signaling pathway in insulin/IGF-I-induced chondrogenesis of the mouse embryonal carcinomaderived cell line ATDC5. Int. J. Biochem. Cell Biol. 33: 1094–1103.10.1016/S1357-2725(01)00067-XSearch in Google Scholar

Hirsch E., Costa C. & Ciraolo E. 2007. Phosphoinositide 3-kinases as a common platform for multi-hormone signaling. J. Endocrinol. 194: 243–256.10.1677/JOE-07-0097Search in Google Scholar PubMed

Hoshino Y., Nishimura K. & Sumpio B.E. 2007. Phosphatase PTEN is inactivated in bovine aortic endothelial cells exposed to cyclic strain. J. Cell. Biochem. 100: 515–526.10.1002/jcb.21085Search in Google Scholar PubMed

Katso R., Okkenhaug K., Ahmadi K., White S., Timms J. & Waterfield M.D. 2001. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17: 615–675.10.1146/annurev.cellbio.17.1.615Search in Google Scholar PubMed

Kim M.J., Kim S., Kim Y., Jin E.J. & Sonn J.K. 2012. Inhibition of RhoA but not ROCK induces chondrogenesis of chick limb mesenchymal cells. Biochem. Biophys. Res. Commun. 418: 500–505.10.1016/j.bbrc.2012.01.053Search in Google Scholar PubMed

Krasilnikov M.A. 2000. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Moscow) 65: 59–67.Search in Google Scholar

Krause U., Bertrand L., Maisin L., Rosa M. & Hue L. 2002. Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur. J. Biochem. 269: 3742–3750.10.1046/j.1432-1033.2002.03069.xSearch in Google Scholar PubMed

Langelier E., Suetterlin R., Hoemann C.D., Aebi U. & Buschmann M.D. 2000. The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments. J. Histochem. Cytochem. 48: 1307–1320.10.1177/002215540004801002Search in Google Scholar

Lee H.H., Chang C.C., Shieh M.J., Wang J.P., Chen Y.T., Young T.H. & Hung S.C. 2013. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci. Rep. 3: 2683.10.1038/srep02683Search in Google Scholar

Lim Y.B., Kang S.S., Park T.K., Lee Y.S., Chun J.S. & Sonn J.K. 2000. Disruption of actin cytoskeleton induces chondrogenesis of mesenchymal cells by activating protein kinase C-alpha signaling. Biochem. Biophys. Res. Commun. 273: 609–613.10.1006/bbrc.2000.2987Search in Google Scholar

Mora A., Komander D., van Aalten D.M. & Alessi D.R. 2004. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol. 15: 161–170.10.1016/j.semcdb.2003.12.022Search in Google Scholar

Najafov A., Sommer E.M., Axten J.M., Deyoung M.P. & Alessi D.R. 2011. Characterization of GSK2334470, a novel and highly specific inhibitor of PDK1. Biochem. J. 433: 357–369.10.1042/BJ20101732Search in Google Scholar

Oh C.D. & Chun J.S. 2003. Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J. Biol. Chem. 278: 36563–36571.10.1074/jbc.M304857200Search in Google Scholar

Oh C.D., Kim S.J., Ju J.W., Song W.K., Kim J.H., Yoo Y.J. & Chun J.S. 2001. Immunosuppressant rapamycin inhibits protein kinase C alpha and p38 mitogen-activated protein kinase leading to the inhibition of chondrogenesis. Eur. J. Pharmacol. 427: 175–185.10.1016/S0014-2999(01)01241-9Search in Google Scholar

Park E.H., Kang S.S., Lee Y.S., Kim S.J., Jin E.J., Tak E.N. & Sonn J.K. 2008. Integrity of the cortical actin ring is required for activation of the PI3K/Akt and p38 MAPK signaling pathways in redifferentiation of chondrocytes on chitosan. Cell Biol. Int. 32: 1272–1278.10.1016/j.cellbi.2008.07.013Search in Google Scholar PubMed

Peyrollier K., Hajduch E., Blair A.S., Hyde R. & Hundal H.S. 2000. L-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport. Biochem. J. 350: 361–368.10.1042/bj3500361Search in Google Scholar

Phornphutkul C., Lee M., Voigt C., Wu K.Y., Ehrlich M.G., Gruppuso P.A. & Chen Q. 2009. The effect of rapamycin on bone growth in rabbits. J. Orthop. Res. 27: 1157–1161.10.1002/jor.20894Search in Google Scholar PubMed PubMed Central

Phornphutkul C., Wu K.Y., Auyeung V., Chen Q. & Gruppuso P.A. 2008. mTOR signaling contributes to chondrocyte differentiation. Dev. Dyn. 237: 702–712.10.1002/dvdy.21464Search in Google Scholar

Qian Y., Corum L., Meng Q., Blenis J., Zheng J.Z., Shi X., Flynn D.C. & Jiang B.H. 2004. PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration. Am. J. Physiol. 286: C153–C163.10.1152/ajpcell.00142.2003Search in Google Scholar

Rodriguez-Viciana P., Warne P.H., Dhand R., Vanhaesebroeck B., Gout I., Fry M.J., Waterfield M.D. & Downward J. 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–532.10.1038/370527a0Search in Google Scholar

Sanez Canedo C., Demeulder B., Ginion A., Bayascas J.R., Balligand J.L., Alessi D.R., Vanoverschelde J.L., Beauloye C., Hue L. & Bertrand L. 2010. Activation of the cardiac mTOR/p70(S6K) pathway by leucine requires PDK1 and correlates with PRAS40 phosphorylation. Am. J. Physiol. Endocrinol. Metab. 298: E761–E769.10.1152/ajpendo.00421.2009Search in Google Scholar

Sarbassov D.D., Ali S.M. & Sabatini D.M. 2005. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17: 596–603.10.1016/j.ceb.2005.09.009Search in Google Scholar

Slomovitz B.M. & Coleman R.L. 2012. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin. Cancer Res. 18: 5856–5864.10.1158/1078-0432.CCR-12-0662Search in Google Scholar

Solursh M., Linsenmayer T.F. & Jensen K.L. 1982. Chondrogenesis from single limb mesenchyme cells. Dev. Biol. 94: 259–264.10.1016/0012-1606(82)90090-2Search in Google Scholar

Song G., Ouyang G. & Bao S. 2005. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med.9: 59–71.10.1111/j.1582-4934.2005.tb00337.xSearch in Google Scholar

Straight A.F., Cheung A., Limouze J., Chen I., Westwood N.J., Sellers J.R. & Mitchison T.J. 2003. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299: 1743–1747.10.1126/science.1081412Search in Google Scholar

Tsakiridis T., Tong P., Matthews B., Tsiani E., Bilan P.J., Klip A. & Downey G.P. 1999. Role of the actin cytoskeleton in insulin action. Microsc. Res. Tech. 47: 79–92.10.1002/(SICI)1097-0029(19991015)47:2<79::AID-JEMT1>3.0.CO;2-SSearch in Google Scholar

Vanhaesebroeck B. & Alessi D.R. 2000. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346: 561–576.10.1042/bj3460561Search in Google Scholar

Wennström S., Hawkins P., Cooke F., Hara K., Yonezawa K., Kasuga M., Jackson T., Claesson-Welsh L. & Stephens L. 1994. Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr. Biol. 4: 385–393.10.1016/S0960-9822(00)00087-7Search in Google Scholar

Wezeman F.H. 1998. Morphological foundations of precartilage development in mesenchyme. Microsc. Res. Tech. 43: 91–101.10.1002/(SICI)1097-0029(19981015)43:2<91::AID-JEMT2>3.0.CO;2-3Search in Google Scholar

Zanetti N.C. & Solursh M. 1984. Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J. Cell Biol. 99: 115–123.10.1083/jcb.99.1.115Search in Google Scholar

Abbreviations

BSA

bovine serum albumin

DAPI

4’,6-diamidino-2-phenylindole

DMSO

dimethyl sulfoxide

FBS

foetal bovine serum

mTOR

mammalian target of rapamycin

PI3K

phosphoinositide 3-kinase

PKD1

phosphoinositide-dependent protein kinase 1

p70S6K

p70 ribosomal protein S6 kinase

Received: 2017-5-12
Accepted: 2017-6-9
Published Online: 2017-6-30
Published in Print: 2017-6-27

©2017 Institute of Molecular Biology, Slovak Academy of Sciences

Articles in the same Issue

  1. Cellular and Molecular Biology
  2. Forensic application of EST-derived STR markers in opium poppy
  3. Botany
  4. Phylogeny and maternal donor of Elymus (Triticeae: Poaceae) in China based on chloroplast matK sequences
  5. Botany
  6. Isolation and characterization of regulators involved in PHOT1-mediated inhibition of hypocotyl phototropism in Arabidopsis
  7. Botany
  8. Isolation and functional characterization of a Lonicera japonica hydroxycinnamoyl transferase involved in chlorogenic acid synthesis
  9. Botany
  10. Salt stress resilience potential of a fungal inoculant isolated from tea cultivation area in maize
  11. Zoology
  12. Distribution of the genus Veigaia (Mesostigmata: Veigaiidae) in Romania with notes on the species ecology
  13. Zoology
  14. The effect of grassland management on diversity and composition of ground-dwelling spider assemblages in the Mátra Landscape Protection Area of Hungary
  15. Zoology
  16. Downstream effect of a pumped-storage hydropower plant on river habitat conditions and benthic life – a case study
  17. Zoology
  18. Parasites as biological tags of divergence in Central European gudgeon populations (Actinopterygii: Cyprinidae: Gobioninae)
  19. Zoology
  20. Chromosomal characteristics of rDNA in a conserved karyotype of two Sternopygus macrurus (Gymnotiformes: Sternopygidae) populations from upper Paraná River basin
  21. Zoology
  22. Habitat suitability and patterns of sex-biased migration of the Iranian long-legged wood frog, Rana pseudodalmatina (Anura: Ranidae)
  23. Cellular and Molecular Biology
  24. Blebbistatin induces chondrogenesis of single mesenchymal cells via PI3K/PDK1/mTOR/p70S6K pathway
  25. Cellular and Molecular Biology
  26. Direct interaction between troponin and myosin enhances the ATPase activity of heavy meromyosin
Downloaded on 31.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2017-0078/html
Scroll to top button