Sustainable analytical chemistry—more than just being green
-
Charlotta Turner
Abstract
This review article describes analytical chemistry beyond green chemistry and all efforts that contribute to a more sustainable development. A background is given on sustainable development and green chemistry. Examples of “greening” strategies for sample preparation, chromatography, and detection are given. Thereafter, the review discusses how and why a method or a solvent could be claimed as being “green”. Green metrics for analytical chemistry is discussed, including the environment, health, and safety (EHS) index and life cycle assessment (LCA). The choice of solvent and the criteria for a solvent being “green” is also discussed. Finally, sustainable analytical chemistry is described by considering the three important “legs” so as to obtain sustainable development—economic feasibility, societal relevance, and environmental soundness. Hopefully, the review article will stimulate some new perspectives on the difference between greenness and sustainability in analytical chemistry.
G. H. Brundtland. Our Common Future, by the World Commission on Environment and Development, Oxford University Press, Oxford (1987).Search in Google Scholar
Ministry of the Environment, Government of Japan. http://www.env.go.jp/en/chemi/hs/minamata2002 (2002).Search in Google Scholar
R. Carson. Silent Spring, Mariner Books (2002).Search in Google Scholar
B. Ward, R. Dubos. Only One Earth. The Care and Maintenance of a Small Planet, Norton (1972).Search in Google Scholar
United Nations. The Future We Want, Report of the United Nations Conference on Sustainable Development, New York (2012).Search in Google Scholar
P. T. Anastas, M. M. Kirchhoff. Acc. Chem. Res.35, 686 (2002). (http://dx.doi.org/10.1021/ar010065m)Search in Google Scholar PubMed
P. T. Anastas, J. C. Warner. Green Chemistry: Theory and Practice, Oxford University Press, Oxford (1998).Search in Google Scholar
P. G. Jessop. Green Chem.13, 1391 (2011). (http://dx.doi.org/10.1039/c0gc00797h)Search in Google Scholar
E. J. Beckman. J. Supercrit. Fluids28, 121 (2004). (http://dx.doi.org/10.1016/S0896-8446(03)00029-9)Search in Google Scholar
H. R. Hobbs, N. R. Thomas. Chem. Rev.107, 2786 (2007). (http://dx.doi.org/10.1021/cr0683820)Search in Google Scholar PubMed
E. Reverchon, I. De Marco. J. Supercrit. Fluids38, 146 (2006). (http://dx.doi.org/10.1016/j.supflu.2006.03.020)Search in Google Scholar
E. Reverchon, R. Adami. J. Supercrit. Fluids37, 1 (2006). (http://dx.doi.org/10.1016/j.supflu.2005.08.003)Search in Google Scholar
J. Chen, S. K. Spear, J. G. Huddleston, R. D. Rogers. Green Chem.7, 64 (2005).Search in Google Scholar
M. Virot, V. Tomao, C. Ginies, F. Chemat. Chromatographia68, 311 (2008). (http://dx.doi.org/10.1365/s10337-008-0696-1)Search in Google Scholar
N. Asfaw, Y. Chebude, A. Ejigu, B. B. Hurisso, P. Licence, R. L. Smith, S. L. Y. Tang, M. Poliakoff. Green Chem.13, 1059 (2011). (http://dx.doi.org/10.1039/c0gc00936a)Search in Google Scholar
R. A. Sheldon. Chem. Commun.3352 (2008). (http://dx.doi.org/10.1039/b803584a)Search in Google Scholar PubMed
R. A. Sheldon. Green Chem.7, 267 (2005). (http://dx.doi.org/10.1039/b418069k)Search in Google Scholar
P. Anastas, N. Eghbali. Chem. Soc. Rev.39, 301 (2010). (http://dx.doi.org/10.1039/b918763b)Search in Google Scholar PubMed
P. T. Anastas. Crit. Rev. Anal. Chem.29, 167 (1999). (http://dx.doi.org/10.1080/10408349891199356)Search in Google Scholar
S. Armenta, S. Garrigues, M. de la Guardia. Trends Anal. Chem.27, 497 (2008). (http://dx.doi.org/10.1016/j.trac.2008.05.003)Search in Google Scholar
M. Tobiszewski, A. Mechlinska, J. Namiesnik. Chem. Soc. Rev.39, 2869 (2010). (http://dx.doi.org/10.1039/b926439f)Search in Google Scholar PubMed
L. H. Keith, L. U. Gron, J. L. Young. Chem. Rev.107, 2695 (2007). (http://dx.doi.org/10.1021/cr068359e)Search in Google Scholar PubMed
M. Koel, M. Kaljurand. Green Analytical Chemistry, Royal Society of Chemistry, Cambridge, UK (2010).Search in Google Scholar
M. de la Guardia, S. Garrigues, S. A. Estrela, B. F. de Reis, L. Hernandez, L. Ramos, M. Pena-Abaurrea, F. R. P. Rocha, M. Kaljurand, M. Koel, D. Barcelo, J. Young, S. Armenta, J. M. Pingarron, C. Bendicho. Challenges in Green Analytical Chemistry. Royal Society of Chemistry, Cambridge, UK (2011).Search in Google Scholar
L. Ramos, E. M. Kristenson, U. A. T. Brinkman. J. Chromatogr., A975, 3 (2002).Search in Google Scholar
M. Herrero, A. Cifuentes, E. Ibanez. Food Chem.98, 136 (2006). (http://dx.doi.org/10.1016/j.foodchem.2005.05.058)Search in Google Scholar
S. B. Hawthorne, C. B. Grabanski, E. Martin, D. J. Miller. J. Chromatogr., A892, 421 (2000).Search in Google Scholar
E. V. Petersson, J. Y. Liu, P. J. R. Sjoberg, R. Danielsson, C. Turner. Anal. Chim. Acta663, 27 (2010). (http://dx.doi.org/10.1016/j.aca.2010.01.023)Search in Google Scholar PubMed
S. Lindahl, A. Ekman, S. Khan, C. Wennerberg, P. Borjesson, P. J. R. Sjoberg, E. N. Karlsson, C. Turner. Green Chem.12, 159 (2010). (http://dx.doi.org/10.1039/b920195p)Search in Google Scholar
P. Arapitsas, C. Turner. Talanta74, 1218 (2008). (http://dx.doi.org/10.1016/j.talanta.2007.08.029)Search in Google Scholar PubMed
C. L. Arthur, J. Pawliszyn. Anal. Chem.62, 2145 (1990). (http://dx.doi.org/10.1021/ac00218a019)Search in Google Scholar
S. Risticevic, V. H. Niri, D. Vuckovic, J. Pawliszyn. Anal. Bioanal. Chem.393, 781 (2009). (http://dx.doi.org/10.1007/s00216-008-2375-3)Search in Google Scholar PubMed
C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, J. O’Mahony, M. J. Whitcombe. J. Mol. Recognit.19, 106 (2006). (http://dx.doi.org/10.1002/jmr.760)Search in Google Scholar PubMed
M. Miro, E. H. Hansen. Anal. Chim. Acta750, 3 (2012). (http://dx.doi.org/10.1016/j.aca.2012.03.049)Search in Google Scholar PubMed
K. Hartonen, M. L. Riekkola. Trends Anal. Chem.27, 1 (2008). (http://dx.doi.org/10.1016/j.trac.2007.10.010)Search in Google Scholar
C. J. Welch, N. J. Wu, M. Biba, R. Hartman, T. Brkovic, X. Y. Gong, R. Helmy, W. Schafer, J. Cuff, Z. Pirzada, L. L. Zhou. Trends Anal. Chem.29, 667 (2010). (http://dx.doi.org/10.1016/j.trac.2010.03.008)Search in Google Scholar
M. Ninonuevo, H. J. An, H. F. Yin, K. Killeen, R. Grimm, R. Ward, B. German, C. Lebrilla. Electrophoresis26, 3641 (2005). (http://dx.doi.org/10.1002/elps.200500246)Search in Google Scholar PubMed
Z. Luo, Y. Xiong, J. F. Parcher. Anal. Chem.75, 3557 (2003). (http://dx.doi.org/10.1021/ac034070a)Search in Google Scholar PubMed
R. M. Smith, R. J. Burgess. Anal. Commun.33, 327 (1996). (http://dx.doi.org/10.1039/ac9963300327)Search in Google Scholar
M. O. Fogwill, K. B. Thurbide. J. Chromatogr., A1200, 49 (2008).Search in Google Scholar
C. Bendicho, I. Lavilla, F. Pena-Pereira, V. Romero. J. Anal. At. Spectrom.27, 1831 (2012). (http://dx.doi.org/10.1039/c2ja30214d)Search in Google Scholar
H. Schulz, M. Baranska, R. Baranski. Biopolymers77, 212 (2005). (http://dx.doi.org/10.1002/bip.20215)Search in Google Scholar PubMed
R. Wilson, S. A. Bowden, J. Parnell, J. M. Cooper. Anal. Chem.82, 2119 (2010). (http://dx.doi.org/10.1021/ac100060g)Search in Google Scholar PubMed
J. D. Grunwaldt, R. Wandeler, A. Baiker. Catal. Rev. Sci. Eng.45, 1 (2003). (http://dx.doi.org/10.1081/CR-120015738)Search in Google Scholar
I. Rodriguez-Meizoso, P. Lazor, C. Turner. J. Supercrit. Fluids65, 87 (2012). (http://dx.doi.org/10.1016/j.supflu.2012.03.002)Search in Google Scholar
F. Casadio, M. Leona, J. R. Lombardi, R. Van Duyne. Acc. Chem. Res.43, 782 (2010). (http://dx.doi.org/10.1021/ar100019q)Search in Google Scholar PubMed
E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, M. S. Feld. Phys. Med. Biol.45, R1 (2000). (http://dx.doi.org/10.1088/0031-9155/45/2/201)Search in Google Scholar PubMed
A. Mustafa, L. M. Trevino, C. Turner. Molecules17, 1809 (2012). (http://dx.doi.org/10.3390/molecules17021809)Search in Google Scholar PubMed PubMed Central
N. E. Craft, J. H. Soares. J. Agric. Food Chem.40, 431 (1992). (http://dx.doi.org/10.1021/jf00015a013)Search in Google Scholar
L. Wright, S. Kemp, I. Williams. Carbon Management2, 61 (2011). (http://dx.doi.org/10.4155/cmt.10.39)Search in Google Scholar
B. M. Trost. Science254, 1471 (1991). (http://dx.doi.org/10.1126/science.1962206)Search in Google Scholar PubMed
R. A. Sheldon. C. R. Acad. Sci. Ser. II C3, 541 (2000).Search in Google Scholar
I. K. Adu, H. Sugiyama, U. Fischer, K. Hungerbuhler. Process. Saf. Environ. Prot.86, 77 (2008). (http://dx.doi.org/10.1016/j.psep.2007.10.005)Search in Google Scholar
G. Rebitzer, T. Ekvall, R. Frischknecht, D. Hunkeler, G. Norris, T. Rydberg, W. P. Schmidt, S. Suh, B. P. Weidema, D. W. Pennington. Environ. Int.30, 701 (2004). (http://dx.doi.org/10.1016/j.envint.2003.11.005)Search in Google Scholar PubMed
D. W. Pennington, J. Potting, G. Finnveden, E. Lindeijer, O. Jolliet, T. Rydberg, G. Rebitzer. Environ. Int.30, 721 (2004). (http://dx.doi.org/10.1016/j.envint.2003.12.009)Search in Google Scholar PubMed
Y. Gaber, U. Tornvall, M. A. Kumar, M. A. Amin, R. Hatti-Kaul. Green Chem.13, 2021 (2011). (http://dx.doi.org/10.1039/c0gc00667j)Search in Google Scholar
Ecosolvent tool, ETH Zürich, http://www.sust-chem.ethz.ch/tools/ecosolvent, accessed 2013-02-09.Search in Google Scholar
C. Capello, S. Hellweg, B. Badertscher, H. Betschart, K. Hungerbuhler. J. Ind. Ecol.11, 26 (2007). (http://dx.doi.org/10.1162/jiec.2007.1231)Search in Google Scholar
R. Hartman, R. Helmy, M. Al-Sayah, C. J. Welch. Green Chem.13, 934 (2011). (http://dx.doi.org/10.1039/c0gc00524j)Search in Google Scholar
A. Galuszka, P. Konieczka, Z. M. Migaszewski, J. Namiesnik. Trends Anal. Chem.37, 61 (2012). (http://dx.doi.org/10.1016/j.trac.2012.03.013)Search in Google Scholar
G. Van der Vorst, H. Van Langenhove, F. De Paep, W. Aelterman, J. Dingenen, J. Dewulf. Green Chem.11, 1007 (2009). (http://dx.doi.org/10.1039/b901151j)Search in Google Scholar
P. G. Jessop, D. A. Jessop, D. B. Fu, L. Phan. Green Chem.14, 1245 (2012). (http://dx.doi.org/10.1039/c2gc16670d)Search in Google Scholar
C. Capello, U. Fischer, K. Hungerbuhler. Green Chem.9, 927 (2007). (http://dx.doi.org/10.1039/b617536h)Search in Google Scholar
R. DeKosky. Ambix56, 138 (2009). (http://dx.doi.org/10.1179/174582309X441408)Search in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)