We extend the class of linear quantile autoregression models by allowing for the possibility of Markov-switching regimes in the conditional distribution of the response variable. We also develop a Gibbs sampling approach for posterior inference by using data augmentation and a location-scale mixture representation of the asymmetric Laplace distribution. Bayesian calculations are easily implemented, because all complete conditional densities used in the Gibbs sampler have closed-form expressions. The proposed Gibbs sampler provides the basis for a stepwise re-estimation procedure that ensures non-crossing quantiles. Monte Carlo experiments and an empirical application to the U.S. real interest rate show that both inference and forecasting are improved when the quantile monotonicity restriction is taken into account.
Inhalt
-
Öffentlich zugänglichMarkov-switching quantile autoregression: a Gibbs sampling approach18. August 2017
-
Erfordert eine Authentifizierung Nicht lizenziertUncertainty in the housing market: evidence from US statesLizenziert29. September 2017
-
Erfordert eine Authentifizierung Nicht lizenziertExchange rate misalignment and economic growth: evidence from nonlinear panel cointegration and granger causality testsLizenziert8. November 2017
-
Erfordert eine Authentifizierung Nicht lizenziertCausal relationships between economic policy uncertainty and housing market returns in China and India: evidence from linear and nonlinear panel and time series modelsLizenziert4. September 2017
-
Erfordert eine Authentifizierung Nicht lizenziertEstimation and inference of threshold regression models with measurement errorsLizenziert26. September 2017
-
Erfordert eine Authentifizierung Nicht lizenziertThe spurious effect of ARCH errors on linearity tests: a theoretical note and an alternative maximum likelihood approachLizenziert21. Juli 2017