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Abstract:
We extend the class of linear quantile autoregression models by allowing for the possibility of Markov-switching
regimes in the conditional distribution of the response variable. We also develop a Gibbs sampling approach for
posterior inference by using data augmentation and a location-scale mixture representation of the asymmetric
Laplace distribution. Bayesian calculations are easily implemented, because all complete conditional densities
used in the Gibbs sampler have closed-form expressions. The proposed Gibbs sampler provides the basis for
a stepwise re-estimation procedure that ensures non-crossing quantiles. Monte Carlo experiments and an em-
pirical application to the U.S. real interest rate show that both inference and forecasting are improved when the
quantile monotonicity restriction is taken into account.
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1 Introduction

The class of linear quantile autoregression (QAR) models of Koenker and Xiao (2006) has proven to be par-
ticularly useful for studying asymmetric dynamics and local persistence in many economic and financial time
series. Examples include real estate prices (Galvao, Montes-Rojas & Park, 2013; Lee, Lee & Lee, 2014), stock
prices and exchange rates (Ferreira, 2011; Baur, Dimpfl & Jung, 2012; Yang, Tu & Zeng, 2014), and more gen-
eral business cycle and inflation indicators (Manzan, 2015). Our objective in this paper is to extend the class of
QAR models by allowing for the possibility of Markov-switching regimes that would influence the conditional
quantiles. Indeed, the presence of regime changes in the conditional distribution of the response variable would
obviously affect its quantiles. The importance of allowing for such effects can also be recognized from the work
of Qu (2008) who proposes testing procedures for structural change in conditional quantiles.

Since the seminal contribution of Hamilton (1989), Markov-switching specifications have become an im-
mensely popular approach to model structural changes in the behaviour of economic and financial time series;
see Piger (2009) for an overview. A distinctive feature of the Markov-switching approach is that the regime
changes are endogenous to the model, as opposed to being treated exogenously like in the classic approach to
structural changes by Chow (1960) which assumes a priori knowledge about how to classify the data between
regimes. Building on the earlier work of Goldfeld and Quandt (1973), the Hamilton (1989) approach specifies
the regimes as being determined by a discrete-time, discrete-state Markov chain with unknown transition prob-
abilities. This process is assumed to be recurrent, meaning that it can move from one state to any other state at
any time. As in the well-known Kalman filter, the unobserved state can be inferred from the observable time se-
ries and the sample likelihood function can then be recursively computed. Our specification also complements
the related extension of the QAR model proposed by Galvao, Montes-Rojas, and Olmo (2011) in which regime
changes are triggered when the time series passes (quantile-specific) threshold values, like in the self-exciting
threshold autoregression models of Tong (1983).

Following Albert and Chib (1993), McCulloch and Tsay (1994), Chib (1996), and Frühwirth-Schnatter (2001),
we adopt a Bayesian approach to inference based on data augmentation such that the latent states can be ana-
lyzed along with the other unknown model parameters through Gibbs sampling. The advantage of the Gibbs
sampling approach to the analysis of Markov-switching models has long been recognized. For example, Albert
and Chib (1993) remark that such an approach avoids the direct calculation of the likelihood function needed
for maximum likelihood estimation. Moreover, the posterior distributions of all unknown parameters (and
Richard Luger is the corresponding author.
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functions thereof) are fully tractable and easy to simulate from. By treating the unobserved states as missing
data, this approach also provides posterior distributions of the states, integrated (by marginalization) over all
the other model parameters.

The Bayesian analysis of quantile regression models rests on the connection between the quantile estima-
tion problem and the likelihood function under an asymmetric Laplace distribution, established by Yu and
Moyeed (2001) and Tsionas (2003). It is important to note, however, that as in Koenker and Machado (1999) the
asymmetric Laplace distribution is not assumed for the data generating process, but is merely used to obtain a
quasi-likelihood function. Other examples of such a parametrization for the purpose Bayesian inference include
Geraci and Bottai (2007), Kottas and Krnjajić (2009), Yue and Rue (2011), Gerlach, Chen, and Chan (2011), and
Chen et al. (2012).

The asymmetric Laplace distribution can be expressed as a location-scale mixture of exponential and normal
distributions (Kotz, Kozubowski & Podgórski, 2001). Following Kozumi and Kobayashi (2011), we exploit this
representation to develop a Gibbs sampling approach wherein all complete conditional densities have closed-
form expressions. An estimate of the marginal likelihood can then be calculated from the Gibbs output using
the method of Chib (1995). The marginal likelihood is the key ingredient for model selection and discrimination
in Bayesian statistics; see the discussion in Kass and Raftery (1995).

We use the Gibbs sampler to solve the well-known quantile crossing problem that may arise when quantile
models are fitted separately for each considered quantile probability level, τ. This common practice of treat-
ing the quantile levels independently of one another can yield fitted quantile curves that cross one another,
thereby leading to a nonsensical response distribution. Indeed, quantile monotonicity requires the quantiles to
be increasing as a function of τ, meaning that any well-defined distribution must necessarily have non-crossing
quantiles. Koenker and Xiao (2006), §4 remark that the crossing problem appears more acute in QAR models
than in ordinary quantile regressions with exogenous covariates, since the support of the regressors is deter-
mined within the autoregressive model.

This quantile crossing problem is potentially worse for non-linear quantile autoregression models, like the
threshold specification of Galvao, Montes-Rojas, and Olmo (2011) and the Markov-switching specification de-
veloped here. Fortunately, the Gibbs sampler provides the basis for a stepwise re-estimation procedure that
ensures non-crossing quantiles. As in Gelfand, Smith, and Lee (1992), draws from the constrained posterior
distribution are obtained straightforwardly by retaining the Gibbs draws that satisfy the non-crossing condi-
tion when sampling the unconstrained posterior distribution. As far as we know, this is the only way to carry out
full Bayesian calculations while avoiding well-nigh impossible numerical integrations over high-dimensional
sets defined by complex restrictions involving the model parameters and the data.

It is important to note that the proposal in a related paper by Ye et al. (2016) is to allow for Markov-switching
parameters in an ordinary quantile regression with exogenous (independent) regressors, not a quantile autore-
gression. This is a fundamental difference with what we propose here. Indeed, as we already mentioned, QAR
models are more likely to suffer from the quantile crossing problem than ordinary quantile regressions since the
regressors are endogenous to the model. Ye et al. (2016) also exploit the asymmetric Laplace connection to de-
vise a (quasi) maximum likelihood estimation (MLE) approach for point estimation, but they do not establish
any distributional theory to guide inference. Moreover, their MLE-based approach treats each quantile level
separately, which means that it may yield crossing quantiles even though their model is less prone to this prob-
lem. In sharp contrast to Ye et al. (2016), our Gibbs sampling approach offers a complete Bayesian methodology
not only for estimation, but also inference, model selection, and ensuring non-crossing quantiles in quantile
regresison models. It is also important to note that our complete closed-form Gibbs sampling approach can
be applied in any quantile regression model with endogenous or exogenous covariates, and whether Markov-
switching effects are allowed for or not. In our empirical application, for instance, we estimate non-crossing
quantiles with the linear QAR model as well as the Markov-switching QAR model.

The current paper is organized as follows. Section 2 begins by introducing the QAR models of Koenker and
Xiao (2006), then shows the asymmetric Laplace connection, and describes the proposed Markov-switching
quantile autoregression models. Section 3 develops the Gibbs sampling algorithm based on a location-scale
mixture representation of the asymmetric Laplace distribution. There are two variants of the approach, de-
pending on how the state variables are sampled (single- or multi-move Gibbs sampling). Section 4 explains the
computation of the marginal likelihood used for model comparisons and the stepwise re-estimation procedure
to ensure non-crossing quantiles. Section 5 presents some simulation evidence about the relative performance
of the Gibbs samplers in the quantile regression context. Section 6 presents the empirical application to the
U.S. real interest rate, which illustrates the gains obtained by enforcing the quantile monotonicity restriction.
Section 7 concludes and the computational details are given in the appendices.

2

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Liu and Luger

2 Markov-switching quantile autoregression

Suppose we have a response variable of interest yt whose time-t conditional quantiles we wish to model as
a function of past information. The linear quantile autoregression (QAR) model of Koenker and Xiao (2006)
specifies the τth conditional quantile of yt as

𝑄𝑦𝑡
( �𝜏 | y𝑡−𝑝∶𝑡−1) � = 𝑐(𝜏) +

𝑝
∑
𝑗=1

𝜙𝑗(𝜏)𝑦𝑡−𝑗, (1)

where y𝑡1∶𝑡2 refers to observations yt1
, …, yt2

, for t1 ≤ t2, with the convention that y = y1∶𝑇 . Given a specified
value of the quantile level τ ∈ (0, 1), the parameters of the QAR(p) model in (1) can be estimated by solving the
following minimization problem:

min
𝑇

∑
𝑡=𝑝+1

𝜌𝜏(�𝑦𝑡 − 𝑄𝑦𝑡
( �𝜏 | y𝑡−𝑝∶𝑡−1) �)�, (2)

by choice of c(τ), ϕ1(τ), …, ϕp(τ), and where ρτ(⋅) is the asymmetric absolute deviation loss function defined as
𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝕀[𝑢 < 0]) (Koenker & Bassett, 1978). Here 𝕀 [A] is the indicator function which equals one when
event A is true, and zero otherwise. For the median τ = 0.5, the loss function in (2) becomes ρτ(u) = 0.5 ∣ u ∣.

Koenker and Machado (1999) explain that the parameters of linear quantile models can also be estimated
by (quasi) maximum likelihood. To see how, consider the QAR(p) model specified in parametric distributional
form as

𝑦𝑡 = 𝑐(𝜏) +
𝑝

∑
𝑗=1

𝜙𝑗(𝜏)𝑦𝑡−𝑗 + 𝛿𝜀𝑡, (3)

where δ > 0 is a scale parameter and {εt} are i.i.d. according to the asymmetric Laplace distribution with prob-
ability density function

𝑓 (𝜀𝑡) = 𝜏(1 − 𝜏) exp(−𝜌𝜏(𝜀𝑡)). (4)

The conditional density function of yt for a given τ then becomes

𝑓 (𝑦𝑡 | y𝑡−𝑝∶𝑡−1) = 𝜏(1 − 𝜏)
𝛿 exp

⎧{
⎨{⎩

−𝜌𝜏 ⎛⎜
⎝

𝑦𝑡 − 𝑄𝑦𝑡
( �𝜏 | y𝑡−𝑝∶𝑡−1) �

𝛿
⎞⎟
⎠

⎫}
⎬}⎭

and, conditional on y1∶𝑝, the sample likelihood can be written as

ℒ( �𝑐(𝜏), 𝜙1(𝜏), … , 𝜙𝑝(𝜏), 𝛿) � = 𝜏𝑇−𝑝(1 − 𝜏)𝑇−𝑝

𝛿𝑇−𝑝 exp
⎧{
⎨{⎩

−𝛿−1
𝑇

∑
𝑡=𝑝+1

𝜌𝜏(�𝑦𝑡 − 𝑄𝑦𝑡
( �𝜏 | y𝑡−𝑝∶𝑡−1) �)�

⎫}
⎬}⎭

. (5)

Since the negative of the loss function appears in the exponent of this expression, maximization of (5) is equiv-
alent to solving the minimization problem in (2). As Yu and Moyeed (2001) and Tsionas (2003) explain, the
asymmetric Laplace distribution provides a natural pathway for the Bayesian analysis of quantile regression
models. Note also that the value of δ does not matter for the estimation of the correct quantiles by maximizing
(5). But rather than fixing it to a constant value, using δ as a free scale parameter clearly makes the assumed
asymmetric Laplace distribution more flexible to capture the true (unknown) error distribution. Other examples
of such a parametrization for Bayesian inference include Geraci and Bottai (2007), Kottas and Krnjajić (2009),
Yue and Rue (2011), Gerlach, Chen, and Chan (2011), and Chen et al. (2012).

The starting point for the developed model is the observation that the QAR(p) model in form (3) is equivalent
to

𝑦𝑡 = 𝜇(𝜏) + 𝜂𝑡,

𝜂𝑡 =
𝑝

∑
𝑗=1

𝜙𝑗(𝜏)𝜂𝑡−𝑗 + 𝛿𝜀𝑡,
(6)
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where {εt} are i.i.d. according to the asymmetric Laplace distribution with density (4) so that μ(τ) is the location
of the τth conditional quantile in this model with autocorrelated errors. Indeed, since ηt = yt − μ(τ), for all t, (6)
can be rewritten as (3) with 𝑐(𝜏) = 𝜇(𝜏)( �1−∑𝑝

𝑗=1 𝜙𝑗(𝜏)) �. The presence of regime changes in the true conditional
distribution of yt would obviously affect the location of its quantiles. Following Hamilton (1989), the quantile
model in (6) can be generalized to account for the possible presence of such regimes as follows:

𝑦𝑡 = 𝜇(𝜏, 𝑠𝑡) + 𝜂𝑡,

𝜇(𝜏, 𝑠𝑡) =
𝐾

∑
𝑖=1

𝜇𝑖(𝜏)𝕀[𝑠𝑡 = 𝑖],

𝜂𝑡 =
𝑝

∑
𝑗=1

𝜙𝑗(𝜏)𝜂𝑡−𝑗 + 𝛿𝜀𝑡,

(7)

where st is a latent variable taking values in the set {1, …, K} according to a Markov chain with one-step transition
probability matrix P whose elements are defined as

𝑝𝑖𝑗 = Pr(𝑠𝑡 = 𝑗 | 𝑠𝑡−1 = 𝑖),
𝐾

∑
𝑗=1

𝑝𝑖𝑗 = 1, for all 𝑖 ∈ {1, … , 𝐾}. (8)

The term μ(τ, st) in (7) is thus the location of the τth conditional quantile of yt given the past of yt itself and
the current regime st. The proposed Markov-switching quantile autoregression (MSQAR) model can then be
rewritten as

𝑦𝑡 = 𝜇(𝜏, 𝑠𝑡) +
𝑝

∑
𝑗=1

𝜙𝑗(𝜏)( �𝑦𝑡−𝑗 − 𝜇(𝜏, 𝑠𝑡−𝑗)) � + 𝛿𝜀𝑡, (9)

since ηt = yt − μ(τ, st), for all t, in (7). For a specified τ, the conditional density function of yt given yt−1, …, yt−p
and st, …, st−p becomes

𝑓 (𝑦𝑡 | y𝑡−𝑝∶𝑡−1, s𝑡−𝑝∶𝑡) = 𝜏(1 − 𝜏)
𝛿 exp {−𝜌𝜏 (

𝑦𝑡 − 𝑄𝑦𝑡
(𝜏 | y𝑡−𝑝∶𝑡−1, s𝑡−𝑝∶𝑡)

𝛿 )} , (10)

where the τth conditional quantile function is given by

𝑄𝑦𝑡
(𝜏 | y𝑡−𝑝∶𝑡−1, s𝑡−𝑝∶𝑡) = 𝜇(𝜏, 𝑠𝑡) +

𝑝
∑
𝑗=1

𝜙𝑗(𝜏)( �𝑦𝑡−𝑗 − 𝜇(𝜏, 𝑠𝑡−𝑗))�. (11)

Here s𝑡1∶𝑡2 refers to st1
, …, st2

, for t1 ≤ t2 , and we let s = s1∶𝑇 . Observe that it would not make sense to allow for
switching in δ, since the quantile regimes cannot be identified through this reduced-form parameter. Note also
that if μi(τ) = μj(τ) for all i, j, then the K-regime MSQAR(K, p) model in (11) collapses to the linear (K = 1 regime)
QAR(p) model in (1). In this case we have 𝜇(𝜏) = 𝑐(𝜏)/( �1 − ∑𝑝

𝑗=1 𝜙𝑗(𝜏))�, assuming of course that there are no
unit roots so the denominator is different from zero.

The MSQAR model in form (9) can be expressed more compactly as

𝜙(𝜏, 𝐿)( �𝑦𝑡 − 𝜇(𝜏, 𝑠𝑡)) � = 𝛿𝜀𝑡,

where 𝜙(𝜏, 𝐿) = ( �1 − 𝜙1(𝜏)𝐿 − ⋯ − 𝜙𝑝(𝜏)𝐿𝑝) � is a pth order polynomial in the lag operator L, defined such that
Lk zt = zt−k for k ≥ 0. The following assumptions are made:

1. μ1(τ) < μ2(τ) < ⋯ < μK(τ).

2. All the roots of ϕ(τ, L) = 0 lie outside the unit circle.

3. pij > 0 for all i, j ∈ {1, …, K}.
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4. Pr(s1 = i) = 1/K for all i ∈ {1, …, K}.

The first three assumptions are standard for Markov-switching time-series models. Assumption 1 ensures the
identification of the regimes, while Assumption 2 imposes stationarity given the sequence of state variables.
Assumption 3 guarantees that the Markov chain is irreducible, i.e. starting st from an arbitrary state i ∈ {1, …,
K}, any state j ∈ {1, …, K} is reachable in finite time. This assumption is also needed for identification purposes
because if a state is never visited then the associated parameters cannot be identified. Assumption 4 treats the
initial state as a random draw from a uniform distribution, independently of the transition probabilities; see
Frühwirth-Schnatter (2006), Ch. 10 for a discussion of the computational advantages of this assumption.

Under these assumptions, the joint density of y𝑝+1∶𝑇 and s, conditional on y1∶𝑝, is

𝑓 (y𝑝+1∶𝑇 , s | y1∶𝑝) = 𝑓 (y𝑝+1∶𝑇 | y1∶𝑝, s) × 𝑝(s | p),

which does not constitute the likelihood function. Indeed, the likelihood function for y𝑝+1∶𝑇 is obtained by inte-
grating out the state variables. Appendix A presents an algorithm to compute the MSQAR likelihood function.1

3 Gibbs sampling

The asymmetric Laplace distribution admits various mixture representations (Kotz, Kozubowski & Podgórski,
2001). Following Kozumi and Kobayashi (2011), the Gibbs sampling algorithm developed here uses a repre-
sentation based on a mixture of exponential and normal distributions. Specifically, if εt follows the asymmetric
Laplace distribution with density (4), then εt can be represented as

𝜀𝑡 = 𝛾𝑒𝑡 + 𝜉√𝑒𝑡𝑧𝑡

with

𝛾 = 1 − 2𝜏
𝜏(1 − 𝜏) and 𝜉 2 = 2

𝜏(1 − 𝜏) ,

where 𝑒𝑡 ∼ ℰ(1), a standard exponential distribution, and zt ∼ N(0, 1), independently of et. With this mixture
representation, model (9) can be equivalently rewritten as

𝑦𝑡 = 𝜇(𝜏, 𝑠𝑡) +
𝑝

∑
𝑗=1

𝜙𝑗(𝜏)( �𝑦𝑡−𝑗 − 𝜇(𝜏, 𝑠𝑡−𝑗))� + 𝛿𝛾𝑒𝑡 + 𝛿𝜉√𝑒𝑡𝑧𝑡.

However, as Kozumi and Kobayashi (2011) explain, such an expression is not convenient for Gibbs sampling
because the scale parameter δ appears in the conditional location of yt. This issue is resolved by working instead
with the reparameterization:

𝑦𝑡 = 𝜇(𝜏, 𝑠𝑡) +
𝑝

∑
𝑗=1

𝜙𝑗(𝜏)( �𝑦𝑡−𝑗 − 𝜇(𝜏, 𝑠𝑡−𝑗))� + 𝛾𝑣𝑡 + 𝜉√𝛿𝑣𝑡𝑧𝑡, (12)

where vt = δet and we let v = v𝑝+1∶𝑇 = (𝑣𝑝+1, … , 𝑣𝑇).
The model parameters are collected in 𝜃𝜃𝜃(𝜏) = (𝜇𝜇𝜇(𝜏)′,𝜙𝜙𝜙(𝜏)′, 𝛿, p′)′, where 𝜇𝜇𝜇(𝜏) = (𝜇1(𝜏), … , 𝜇𝐾(𝜏))′,

𝜙𝜙𝜙(𝜏) = (𝜙1(𝜏), … , 𝜙𝑝(𝜏))′, and p = vec(P) stacks the elements of the transition probability matrix into a
column vector. The Gibbs sampler is an iterative procedure that can be started using any set of values in
the support of the posterior distribution 𝜋(𝜃𝜃𝜃(𝜏) | y) and will produce a Markov chain {𝜃𝜃𝜃(𝜏)𝑛}𝑁

𝑛=1 with equi-
librium distribution equal to this target posterior distribution; see Casella and George (1992) for an intro-
duction and Tierney (1994) for a more detailed treatment. Note that v and s are latent, so data augmenta-
tion will be used when sampling from the posterior distribution. Specifically, given a previous Gibbs draw
(s𝑛−1, p𝑛−1,𝜇𝜇𝜇(𝜏)𝑛−1,𝜙𝜙𝜙(𝜏)𝑛−1, v𝑛−1, 𝛿𝑛−1), the next one is obtained by sampling iteratively from the following
full conditional distributions:
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𝑝(�s𝑛 | p𝑛−1,𝜇𝜇𝜇(𝜏)𝑛−1,𝜙𝜙𝜙(𝜏)𝑛−1, v𝑛−1, 𝛿𝑛−1, y) �,
𝜋( �p𝑛 | s𝑛,𝜇𝜇𝜇(𝜏)𝑛−1,𝜙𝜙𝜙(𝜏)𝑛−1, v𝑛−1, 𝛿𝑛−1, y) �,
𝜋( �𝜇𝜇𝜇(𝜏)𝑛 | s𝑛, p𝑛,𝜙𝜙𝜙(𝜏)𝑛−1, v𝑛−1, 𝛿𝑛−1, y) �, subject to 𝜇𝜇𝜇(𝜏)𝑛 ∈ 𝒞𝜇𝜇𝜇(𝜏),
𝜋( �𝜙𝜙𝜙(𝜏)𝑛 | s𝑛, p𝑛,𝜇𝜇𝜇(𝜏)𝑛, v𝑛−1, 𝛿𝑛−1, y) �, subject to 𝜙𝜙𝜙(𝜏)𝑛 ∈ 𝒞𝜙𝜙𝜙(𝜏),
𝑝(�v𝑛 | s𝑛, p𝑛,𝜇𝜇𝜇(𝜏)𝑛,𝜙𝜙𝜙(𝜏)𝑛, 𝛿𝑛−1, y) �,
𝜋( �𝛿𝑛 | s𝑛, p𝑛,𝜇𝜇𝜇(𝜏)𝑛,𝜙𝜙𝜙(𝜏)𝑛, v𝑛, y) �,

where 𝒞𝜇𝜇𝜇(𝜏) = {𝜇𝜇𝜇(𝜏) ∶ 𝜇1(𝜏) < 𝜇2(𝜏) < ⋯ < 𝜇𝐾(𝜏)} and 𝒞𝜙𝜙𝜙(𝜏) = {𝜙𝜙𝜙(𝜏) ∶ all the roots of 𝜙(𝜏, 𝐿) =
0 lie outside the unit circle} are the constraint sets for 𝜇𝜇𝜇(𝜏) and 𝜙𝜙𝜙(𝜏) under Assumption 1 and Assumption
2, respectively. These steps are repeated a large number of times until the Markov chain has achieved con-
vergence. After the burn-in iterations, each complete pass through the Gibbs steps yields a draw from the
joint posterior density 𝜋( �s, p,𝜇𝜇𝜇(𝜏),𝜙𝜙𝜙(𝜏), v, 𝛿 | y) �. These draws from the sampling algorithm are denoted by
{�s𝑛, p𝑛,𝜇𝜇𝜇(𝜏)𝑛,𝜙𝜙𝜙(𝜏)𝑛, v𝑛, 𝛿𝑛 | y}�𝑁

𝑛=1. Appendix B explains in detail how to generate draws from each of the con-
ditional distributions making up the steps of the Gibbs sampling procedure.

4 Specification issues

The proposed MSQAR model applies to a specified quantile probability level τ. A typical quantile regression
analysis, however, might involve several probability levels τ1 < ⋯ < τq. Two issues arise when several quantile
probability levels τ are considered. The first is that the models at the considered quantile levels each yield an
inference about the latent Markov chain. This begs the question: which one should be retained?

The second issue is that the fitted quantiles can cross one another, since the models (defined for each τ) are
fitted separately. In other words, if the models are estimated separately for each of the q desired probability
levels, then the resulting conditional quantile functions may not be monotonically increasing in τ. This is the
well-known quantile crossing problem, which obviously leads to a nonsensical response distribution since any
distribution must necessarily have non-crossing quantiles in order to be well defined. We solve this problem by
proposing a stepwise procedure similar to Wu and Liu (2009), whereby the quantiles are refitted sequentially
while constraining the current curve not to cross the previous one.

4.1 Posterior state classification

Our proposal is to first estimate an MSQAR for each quantile level τ1, …, τq separately and to compute the log
marginal likelihood estimates log 𝜋̂( �y | 𝜏𝑖) �, i = 1, …, q, corresponding to each of these models. The marginal
likelihood is related to the prior, posterior, and sample density functions via the equality

𝜋(y | 𝜏𝑖) =
𝑓 ( �y | 𝜃𝜃𝜃(𝜏𝑖))�𝜋( �𝜃𝜃𝜃(𝜏𝑖))�

𝜋( �𝜃𝜃𝜃(𝜏𝑖) | y) � ,

which holds at all admissible points of the parameter space. So for given values 𝜃𝜃𝜃(𝜏𝑖)∗ of the model parameters,
we can obtain an estimate of log 𝜋(y | 𝜏𝑖) using

log 𝜋̂(y | 𝜏𝑖) = log 𝑓 ( �y | 𝜃𝜃𝜃(𝜏𝑖)∗) � + log 𝜋( �𝜃𝜃𝜃(𝜏𝑖)∗) � − log 𝜋̂( �𝜃𝜃𝜃(𝜏𝑖)∗ | y) �, (13)

where 𝜋̂( �𝜃𝜃𝜃(𝜏𝑖)∗ | y) � is an estimate of the posterior ordinate at the chosen parameter values. In principle, 𝜃𝜃𝜃(𝜏𝑖)∗

could be any point in the space of admissible values.2 Here we follow Chib (1995) and use the posterior mean;
see Appendix C for the detailed computation of (13).

Let τi* refer to the model achieving the highest marginal likelihood among the quantile levels 𝜏1 < ⋯ <
𝜏𝑖∗−1 < 𝜏𝑖∗ < 𝜏𝑖∗+1 < ⋯ < 𝜏𝑞. This model is used to obtain a classification of regimes at each time period from
the output of the Gibbs sampler, written here in expanded form as {𝑠𝑛

1 , … , 𝑠𝑛
𝑇 , p𝑛,𝜇𝜇𝜇(𝜏𝑖∗)𝑛,𝜙𝜙𝜙(𝜏𝑖∗)𝑛, v𝑛, 𝛿𝑛}𝑁

𝑛=1
with N being the number of draws from the posterior density. Following Bauwens, Preminger, and Rombouts
(2010) and Billio, Casarin, and Osuntuyi (2014), we identify ŝt as the time-t state with the highest posterior
probability. Specifically, we estimate the posterior state probabilities as

Pr(𝑠𝑡 = 𝑖 | y) = 𝑁−1
𝑁

∑
𝑖=1

𝕀[𝑠𝑛
𝑡 = 𝑖],
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for t = 1, …, T and i = 1, …, K. Note that these posterior state probabilities may be considered as “smoothed”
probabilities, since they are based on the full sample, y (Kim & Nelson, 1999, p. 233). The associated sequence of
fitted states is denoted ̂s = { ̂𝑠𝑡}𝑇

𝑡=1, which results from applying the classification rule: set ̂𝑠𝑡 = 𝑖 if Pr(𝑠𝑡 = 𝑖 | y)
is the maximal value among Pr(𝑠𝑡 = 1 | y), … , Pr(𝑠𝑡 = 𝐾 | y).3

In many practical applications, it may be convenient to simply set 𝜏𝑖∗ = 0.5. This would be a reasonable
choice if the true error distribution is unimodal and symmetric around zero like a centered normal distribution
(cf. Wu & Liu, 2009) and this choice also yields computational savings.

4.2 Non-crossing quantiles

The next step consists of sequentially re-estimating the conditional quantile functions subject to the non-
crossing restrictions. Under these constraints the parameter vector 𝜃𝜃𝜃(𝜏) is restricted to lie in a set Ξy,𝜏𝜏𝜏 which
ensures that the conditional quantiles at level τ do not cross those at any other level. The τth conditional quan-
tiles that we wish to restrict are

𝑄𝑦𝑡
(𝜏 | 𝜇𝜇𝜇(𝜏),𝜙𝜙𝜙(𝜏), y, ̂s) = 𝜇(𝜏, ̂𝑠𝑡) +

𝑝
∑
𝑗=1

𝜙𝑗(𝜏)( �𝑦𝑡−𝑗 − 𝜇(𝜏, ̂𝑠𝑡−𝑗))�, 𝑡 = 1, … , 𝑇,

where ̂s is the sequence of fitted states inferred from the model at level 𝜏𝑖∗ . Starting with the level 𝜏𝑖∗ at which
the quantiles are unconstrained, the subsequent constraint setsΞy,𝜏𝑗−1

, for 𝑗 = 𝑖∗, 𝑖∗−1, … , 2, are then determined
by the inequality restrictions:

𝑄𝑦𝑡
(𝜏𝑗−1 | 𝜇𝜇𝜇(𝜏𝑗−1),𝜙𝜙𝜙(𝜏𝑗−1), y, ̂s) ≤ 𝑄𝑦𝑡

(𝜏𝑗 | 𝜇̂𝜇𝜇(𝜏𝑗), 𝜙̂𝜙𝜙(𝜏𝑗), y, ̂s), 𝑡 = 1, … , 𝑇,

and Ξy,𝜏𝑗+1
, for 𝑗 = 𝑖∗, 𝑖∗ + 1, … , 𝑞 − 1, are determined by

𝑄𝑦𝑡
(𝜏𝑗+1 | 𝜇𝜇𝜇(𝜏𝑗+1),𝜙𝜙𝜙(𝜏𝑗+1), y, ̂s) ≥ 𝑄𝑦𝑡

(𝜏𝑗 | 𝜇̂𝜇𝜇(𝜏𝑗), 𝜙̂𝜙𝜙(𝜏𝑗), y, ̂s), 𝑡 = 1, … , 𝑇,

where 𝜇̂𝜇𝜇(𝜏𝑗) and 𝜙̂𝜙𝜙(𝜏𝑗) refer to the posterior mean estimates at the previous level τj. Observe that once the
constraint sets Ξy,𝜏𝑗 , j = 1, …, q, are determined, the constrained Bayesian models (likelihood × prior) are given
by

⎧{
⎨{⎩

𝑓 ( �y | 𝜃𝜃𝜃(𝜏𝑗)) �𝜋( �𝜃𝜃𝜃(𝜏𝑗))�, (y, 𝜃𝜃𝜃(𝜏𝑗)) ∈ Ξ𝜏𝑗 ,
0, (y, 𝜃𝜃𝜃(𝜏𝑗)) ∉ Ξ𝜏𝑗 ,

�

where Ξ𝜏𝑗 = {(y, 𝜃𝜃𝜃(𝜏𝑗)) ∶ 𝜃𝜃𝜃(𝜏𝑗) ∈ Ξ𝑦,𝜏𝑗𝑦,𝜏𝑗𝑦,𝜏𝑗}. The posterior distribution for 𝜃𝜃𝜃(𝜏𝑗), given the constraints, is then
simply the unconstrained posterior appropriately normalized so that

𝜋( �𝜃𝜃𝜃(𝜏𝑗) | y) � =
𝑓 ( �y | 𝜃𝜃𝜃(𝜏𝑗))�𝜋( �𝜃𝜃𝜃(𝜏𝑗)) �

∫Ξ𝑦,𝜏𝑗𝑦,𝜏𝑗𝑦,𝜏𝑗
𝑓 ( �y | 𝜃𝜃𝜃(𝜏𝑗))�𝜋( �𝜃𝜃𝜃(𝜏𝑗))� , 𝜃𝜃𝜃(𝜏𝑗) ∈ Ξ𝑦,𝜏𝑗𝑦,𝜏𝑗𝑦,𝜏𝑗 .

It is important to realize that a direct evaluation of this expression is infeasible as it involves numerical inte-
grations over Ξ𝑦,𝜏𝑗𝑦,𝜏𝑗𝑦,𝜏𝑗 , which is a high-dimensional set defined by very complex restrictions involving the model
parameters and the data. And there are q − 1 such expressions, defined for j = 1, …, q, save for j = i*.

Fortunately, it is straightforward to obtain a constrained posterior distribution with the Gibbs sampler. Re-
gardless of how complicated a constraint set is, Gelfand, Smith, and Lee (1992) show that the Gibbs sampler can
be implemented by identifying the full conditionals under the unconstrained model and then restricting the
cross-section. This can be done simply by generating from the unconstrained full conditional and retaining the
variate value only if it falls in the cross-section constraint region; see Gelfand, Smith, and Lee (1992) for more
details and other examples. In our context, this approach consists of sampling iteratively from

𝜋( �𝜇𝜇𝜇(𝜏𝑗−1)𝑛 | 𝜙𝜙𝜙(𝜏𝑗−1)𝑛−1, v𝑛−1, 𝛿𝑛−1, y, ̂s) �, subject to

𝑄𝑦𝑡
(𝜏𝑗−1 | 𝜇𝜇𝜇(𝜏𝑗−1)𝑛,𝜙𝜙𝜙(𝜏𝑗−1)𝑛−1, y, ̂s) ≤ 𝑄𝑦𝑡

(𝜏𝑗 | 𝜇̂𝜇𝜇(𝜏𝑗), 𝜙̂𝜙𝜙(𝜏𝑗), y, ̂s), 𝑡 = 1, … , 𝑇,
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𝜋( �𝜙𝜙𝜙(𝜏𝑗−1)𝑛 | 𝜇𝜇𝜇(𝜏𝑗−1)𝑛, v𝑛−1, 𝛿𝑛−1, y, ̂s) �, subject to

𝑄𝑦𝑡
(𝜏𝑗−1 | 𝜇𝜇𝜇(𝜏𝑗−1)𝑛,𝜙𝜙𝜙(𝜏𝑗−1)𝑛, y, ̂s) ≤ 𝑄𝑦𝑡

(𝜏𝑗 | 𝜇̂𝜇𝜇(𝜏𝑗), 𝜙̂𝜙𝜙(𝜏𝑗), y, ̂s), 𝑡 = 1, … , 𝑇,

𝜋( �v𝑛 | 𝜇𝜇𝜇(𝜏𝑗−1)𝑛,𝜙𝜙𝜙(𝜏𝑗−1)𝑛, 𝛿𝑛−1, y, ̂s) �,
𝜋( �𝛿𝑛 | ̂s,𝜇𝜇𝜇(𝜏𝑗−1)𝑛,𝜙𝜙𝜙(𝜏𝑗−1)𝑛, v𝑛, y) �,
for 𝑗 = 𝑖∗, 𝑖∗ − 1, … , 2, and then from
𝜋( �𝜇𝜇𝜇(𝜏𝑗+1)𝑛 | 𝜙𝜙𝜙(𝜏𝑗+1)𝑛−1, v𝑛−1, 𝛿𝑛−1, y, ̂s) �, subject to

𝑄𝑦𝑡
(𝜏𝑗+1 | 𝜇𝜇𝜇(𝜏𝑗+1)𝑛,𝜙𝜙𝜙(𝜏𝑗+1)𝑛−1, y, ̂s) ≥ 𝑄𝑦𝑡

(𝜏𝑗 | 𝜇̂𝜇𝜇(𝜏𝑗), 𝜙̂𝜙𝜙(𝜏𝑗), y, ̂s), 𝑡 = 1, … , 𝑇,

𝜋( �𝜙𝜙𝜙(𝜏𝑗+1)𝑛 | 𝜇𝜇𝜇(𝜏𝑗+1)𝑛, v𝑛−1, 𝛿𝑛−1, y, ̂s) �, subject to

𝑄𝑦𝑡
(𝜏𝑗+1 | 𝜇𝜇𝜇(𝜏𝑗+1)𝑛,𝜙𝜙𝜙(𝜏𝑗+1)𝑛, y, ̂s) ≥ 𝑄𝑦𝑡

(𝜏𝑗 | 𝜇̂𝜇𝜇(𝜏𝑗), 𝜙̂𝜙𝜙(𝜏𝑗), y, ̂s), 𝑡 = 1, … , 𝑇,

𝜋( �v𝑛 | 𝜇𝜇𝜇(𝜏𝑗+1)𝑛,𝜙𝜙𝜙(𝜏𝑗+1)𝑛, 𝛿𝑛−1, y, ̂s) �,
𝜋( �𝛿𝑛 | ̂s,𝜇𝜇𝜇(𝜏𝑗+1)𝑛,𝜙𝜙𝜙(𝜏𝑗+1)𝑛, v𝑛, y) �,
for 𝑗 = 𝑖∗, 𝑖∗ + 1, … , 𝑞 − 1. So proceeding this way in decreasing fashion from 𝜏𝑖∗ to τ1, and then in increasing

fashion from 𝜏𝑖∗ to τq, ensures that the re-estimated conditional quantile functions do not cross one another.
As Gelfand, Smith, and Lee (1992) explain, sampling this way may not be particularly efficient, but this is more
than compensated for by the ease of implementation of the Gibbs sampler.

As far as we know, this is the only way to carry out full Bayesian calculations while avoiding well-nigh
impossible numerical integrations over high-dimensional sets defined by complex restrictions. Note also that
our method to enforce non-crossing quantiles can be applied in any quantile regression model with endoge-
nous or exogenous covariates, and whether Markov-switching effects are allowed for or not. In our empirical
application, for instance, we estimate non-crossing quantiles with the linear QAR model as well as the MSQAR
model.

5 Monte Carlo experiments

In this section, we examine the performance of the Gibbs sampler by means of Monte Carlo experiments. We
use as data-generating process (DGP) the Garcia and Perron (1996) Markov-switching AR(2) model, given as

𝑦𝑡 = 𝜇(𝑠𝑡) + 𝜙1( �𝑦𝑡−1 − 𝜇(𝑠𝑡−1))� + 𝜙2( �𝑦𝑡−2 − 𝜇(𝑠𝑡−2))� + 𝜎(𝑠𝑡)𝜖𝑡, (14)

where 𝜇(𝑠𝑡) = ∑3
𝑖=1 𝜇𝑖𝕀[𝑠𝑡 = 𝑖], 𝜎(𝑠𝑡) = ∑3

𝑖=1 𝜎𝑖𝕀[𝑠𝑡 = 𝑖], and st takes values in {1, 2, 3} according to the outcome
of a first-order Markov chain. This three-state Markov-switching model was used by Garcia and Perron (1996)
to investigate the presence of regime changes in the conditional mean and variance of the quarterly U.S. real
interest rate from 1960Q1 to 1990Q4 (124 observations).

We set the true values of the parameters appearing in (14) as 𝜇𝜇𝜇 = (−1.5, 1.3, 4), 𝜙𝜙𝜙 = (0.05, 0.05), 𝜎𝜎𝜎2 =
(5.5, 1.5, 6.5), and the transition probabilities of the Markov chain are set as pij = 0.95 when i = j, and pij = 0.025
when i ≠ j. These values correspond closely to the estimates reported by Garcia and Perron (1996) and Kim
and Nelson (1999), §9.3. We examine sample sizes T = 120, 240 and three different distributions for ϵt: (i) a
standard normal distribution; (ii) a Student-t distribution with three degrees of freedom, standardized to have
unit variance; and (iii) a gamma distribution with shape 4 and scale 1, standardized to have mean zero and unit
variance.

We consider the MSQAR(K, p) model in (9), correctly specified with K = 3, p = 2, and nine different quantile
levels τ = 0.1, …, 0.9. We also include a misspecified QAR(2) to assess the effect of ignoring the Markov-switching
structure. The prior for 𝜇𝜇𝜇(𝜏) is a trivariate normal with mean 𝜇𝜇𝜇 + 𝑄𝑧𝑡

(𝜏) and covariance matrix equal to 0.12
times a diagonal matrix, where Qzt

(τ) is the standard normal quantile function. A bivariate normal distribution
with mean zero and covariance matrix equal to 0.08 times a diagonal matrix is used as the prior for 𝜙𝜙𝜙(𝜏), at all
τ. Finally the prior for the scale parameter δ appearing in the asymmetric Laplace distribution is an 𝐼𝐺(0.1/2,
0.1/2) distribution, and the transition probabilities are sampled according to Appendix B.2 using a Dirichlet
distribution with hyperparameters set to 0.1. After running the Gibbs (single- and multi-move) samplers for
5000 burn-in iterations, we use the next 20,000 draws with a thinning of 2 for inference, and the simulation
results are based on 400 replications of each DGP configuration.
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From the Gibbs output we obtain ̂𝑠1, … , ̂𝑠𝑇 , the states identified a posteriori. As explained in Section 4.2 these
are found from the posterior state probabilities Pr(𝑠𝑡 = 𝑖 | y), which are computed by averaging the Gibbs
draws of the state variables. The Gibbs sampler can then be evaluated by computing the proportion of correctly
classified (PCC) states as

PCC = 1
𝑇

𝑇
∑
𝑡=1

𝕀[ ̂𝑠𝑡 = 𝑠𝑡], (15)

where st is the true state at time t.
Table 1 reports the median along with the corresponding lower 5% and upper 95% quantiles of the PCC

statistics across the 400 replications of each DGP configuration. We see that 84 to 94% of states are correctly
identified when the quantile level τ is between 0.4 and 0.6, and the PCCs deteriorate as the quantile level be-
comes more extreme towards either tail. Comparing the distributions, we observe that the best performance is
achieved under Student-t errors. For instance, when T = 120 and τ is in the 0.4–0.6 range, the median PCCs under
normal and gamma errors are around 80%, while those under the heavier-tailed Student-t errors exceed 90%. It
is also interesting to note that increasing the sample size does not affect much the median PCC, but rather has a
greater effect of the range of the estimated PCCs. As T doubles from 120 to 240 under each distribution, we can
see in general a narrowing of the range between the lower and upper PCC quantiles, while the median remains
almost unchanged. This is the same effect also seen when comparing the single- and multi-move samplers.
Indeed, the relative computational efficiency of the multi-move relative to the single-move samplers appears
most importantly as a reduction in the variance of correctly identified states.

Table 1: In-sample proportion of correctly identified states under various sample sizes and error distributions: correctly
specified MSQAR(3, 2) model.

Bayesian inference MLE inference

Single-move sampler Multi-move sampler

τ T = 120 T = 240 T = 120 T = 240 T = 120 T = 240

Panel A: Normal errors
 0.1 0.754

(0.296, 0.949)
0.777

(0.387, 0.924)
0.788

(0.534, 0.941)
0.798

(0.592, 0.903)
0.449

(0.190, 0.720)
0.473

(0.196, 0.716)
 0.2 0.771

(0.322, 0.966)
0.786

(0.327, 0.941)
0.797

(0.491, 0.949)
0.790

(0.587, 0.920)
0.475

(0.177 ,0.791)
0.511

(0.197, 0.722)
 0.3 0.780

(0.314, 0.941)
0.790

(0.454, 0.916)
0.805

(0.491, 0.966)
0.811

(0.580, 0.937)
0.572

(0.267, 0.845)
0.598

(0.284, 0.773)
 0.4 0.805

(0.500, 0.932)
0.798

(0.584, 0.908)
0.839

(0.550, 0.975)
0.853

(0.654, 0.945)
0.555

(0.261, 0.854)
0.627

(0.249, 0.810)
 0.5 0.812

(0.559, 0.941)
0.819

(0.630, 0.916)
0.873

(0.635, 0.975)
0.875

(0.726, 0.958)
0.579

(0.269, 0.886)
0.645

(0.251, 0.835)
 0.6 0.805

(0.406, 0.949)
0.811

(0.504, 0.924)
0.856

(0.609, 0.975)
0.861

(0.680, 0.958)
0.552

(0.267, 0.880)
0.641

(0.242, 0.844)
 0.7 0.788

(0.364, 0.958)
0.811

(0.353, 0.933)
0.831

(0.559, 0.966)
0.840

(0.638, 0.941)
0.564

(0.269, 0.836)
0.626

(0.251, 0.787)
 0.8 0.767

(0.336, 0.966)
0.803

(0.356, 0.950)
0.822

(0.525, 0.958)
0.819

(0.618, 0.929)
0.462

(0.174, 0.782)
0.529

(0.279, 0.772)
 0.9 0.763

(0.303, 0.966)
0.773

(0.339, 0.937)
0.822

(0.584, 0.958)
0.817

(0.639, 0.920)
0.455

(0.207, 0.740)
0.545

(0.191, 0.730)
 Average 0.782

(0.377, 0.946)
0.796

(0.437, 0.923)
0.825

(0.553, 0.956)
0.829

(0.634, 0.930)
0.518

(0.230, 0.817)
0.577

(0.242, 0.779)
Panel B: Student-t errors
 0.1 0.856

(0.610, 0.958)
0.845

(0.680, 0.945)
0.864

(0.635, 0.966)
0.869

(0.706, 0.941)
0.503

(0.179, 0.783)
0.493

(0.221, 0.775)
 0.2 0.881

(0.635, 0.966)
0.874

(0.718, 0.958)
0.886

(0.695, 0.975)
0.888

(0.744, 0.958)
0.552

(0.228, 0.884)
0.601

(0.235, 0.885)
 0.3 0.907

(0.669, 0.983)
0.908

(0.777, 0.975)
0.915

(0.737, 0.983)
0.917

(0.811, 0.975)
0.667

(0.402, 0.936)
0.675

(0.408, 0.919)
 0.4 0.924

(0.576, 0.992)
0.929

(0.651, 0.979)
0.932

(0.805, 0.992)
0.935

(0.861, 0.979)
0.689

(0.386, 0.937)
0.743

(0.483, 0.935)
 0.5 0.932

(0.613, 0.992)
0.941

(0.720, 0.983)
0.941

(0.839, 0.992)
0.945

(0.874, 0.987)
0.668

(0.378, 0.954)
0.765

(0.476, 0.947)
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 0.6 0.941
(0.600, 0.992)

0.941
(0.702, 0.987)

0.941
(0.831, 0.992)

0.941
(0.865, 0.987)

0.676
(0.375, 0.948)

0.719
(0.501, 0.949)

 0.7 0.924
(0.686, 0.992)

0.920
(0.765, 0.979)

0.924
(0.780, 0.992)

0.924
(0.819, 0.983)

0.666
(0.380, 0.932)

0.707
(0.403, 0.942)

 0.8 0.898
(0.703, 0.975)

0.891
(0.760, 0.971)

0.898
(0.746, 0.983)

0.895
(0.773, 0.971)

0.567
(0.287, 0.908)

0.576
(0.314, 0.915)

 0.9 0.873
(0.694, 0.966)

0.866
(0.706, 0.954)

0.881
(0.712, 0.967)

0.886
(0.718, 0.962)

0.499
(0.192, 0.819)

0.534
(0.244, 0.870)

 Average 0.904
(0.642, 0.975)

0.901
(0.719, 0.964)

0.909
(0.753, 0.978)

0.911
(0.796, 0.966)

0.609
(0.314, 0.899)

0.645
(0.366, 0.908)

Panel C: Gamma errors
 0.1 0.720

(0.332, 0.967)
0.739

(0.256, 0.945)
0.814

(0.551, 0.966)
0.813

(0.563, 0.929)
0.484

(0.197, 0.769)
0.535

(0.219, 0.823)
 0.2 0.742

(0.288, 0.958)
0.775

(0.298, 0.945)
0.805

(0.533, 0.967)
0.811

(0.546, 0.937)
0.624

(0.295, 0.823)
0.632

(0.318, 0.832)
 0.3 0.780

(0.304, 0.958)
0.794

(0.349, 0.933)
0.818

(0.500, 0.975)
0.828

(0.538, 0.950)
0.626

(0.279, 0.839)
0.652

(0.310, 0.863)
 0.4 0.788

(0.414, 0.966)
0.803

(0.538, 0.929)
0.839

(0.559, 0.983)
0.845

(0.613, 0.962)
0.714

(0.376, 0.879)
0.723

(0.424, 0.857)
 0.5 0.807

(0.508, 0.958)
0.814

(0.592, 0.916)
0.864

(0.619, 0.983)
0.876

(0.701, 0.962)
0.709

(0.393, 0.889)
0.748

(0.492, 0.855)
 0.6 0.790

(0.340, 0.941)
0.805

(0.499, 0.941)
0.864

(0.635, 0.983)
0.878

(0.706, 0.962)
0.712

(0.381, 0.885)
0.727

(0.490, 0.876)
 0.7 0.780

(0.381, 0.958)
0.786

(0.420, 0.929)
0.839

(0.576, 0.975)
0.849

(0.660, 0.946)
0.612

(0.386, 0.877)
0.710

(0.413, 0.859)
 0.8 0.758

(0.347, 0.949)
0.771

(0.398, 0.954)
0.805

(0.508, 0.958)
0.815

(0.609, 0.929)
0.529

(0.317, 0.817)
0.617

(0.350, 0.822)
 0.9 0.729

(0.311, 0.975)
0.754

(0.356, 0.950)
0.805

(0.550, 0.949)
0.807

(0.609, 0.916)
0.486

(0.201, 0.729)
0.493

(0.268, 0.738)
 Average 0.766

(0.358, 0.952)
0.782

(0.411, 0.933)
0.828

(0.559, 0.965)
0.835

(0.616, 0.938)
0.611

(0.315, 0.832)
0.641

(0.359, 0.832)

This table shows the median of the in-sample PCCs, defined in (15), across 400 replications of each DGP, while the numbers in
parenthesis are the corresponding 5% and 95% quantiles.

The accuracy of estimation is further assessed by examining the deviations between the true conditional
quantile 𝑄𝑦𝑡

(𝜏 | 𝑦𝑡−1, 𝑦𝑡−2, 𝑠𝑡, 𝑠𝑡−1, 𝑠𝑡−2; 𝜃) implied by the DGP in (14) and 𝑄𝑦𝑡
(𝜏 | 𝑦𝑡−1, 𝑦𝑡−2, ̂𝑠𝑡, ̂𝑠𝑡−1, ̂𝑠𝑡−2; ̂𝜃(𝜏)), the

estimated conditional quantile under the MSQAR(3, 2) model. More precisely, we compute the mean absolute
deviation error (MADE)4 across observations as

MADE = 1
𝑇

𝑇
∑
𝑡=1

∣ �𝑄𝑦𝑡
( �𝜏 | 𝑦𝑡−1, 𝑦𝑡−2, 𝑠𝑡, 𝑠𝑡−1, 𝑠𝑡−2; 𝜃𝜃𝜃) � − 𝑄𝑦𝑡

( �𝜏 | 𝑦𝑡−1, 𝑦𝑡−2, ̂𝑠𝑡, ̂𝑠𝑡−1, ̂𝑠𝑡−2; ̂𝜃𝜃𝜃(𝜏)) �∣ �, (16)

where ̂𝜃𝜃𝜃(𝜏) are the posterior means of the parameters, and the MADE statistic is computed for each DGP
replication, as we did before with the PCC statistic. The results are shown in Table 2, where for each DGP
configuration the entries are the median of the 400 MADEs reported with the corresponding lower 5% and
upper 95% quantiles.

Table 2: In-sample MADE under various sample sizes and error distributions: correctly specified MSQAR(3, 2) model.

Bayesian inference MLE inference

Single-move sampler Multi-move sampler

τ T = 120 T = 240 T = 120 T = 240 T = 120 T = 240

Panel A: Normal errors
 0.1 1.045

(0.753, 1.547)
0.980

(0.702, 1.341)
1.008

(0.731, 1.530)
0.945

(0.680, 1.275)
1.411

(1.048, 1.793)
1.373

(1.106, 1.661)
 0.2 0.931

(0.637, 1.524)
0.859

(0.622, 1.256)
0.919

(0.632, 1.332)
0.847

(0.609, 1.193)
1.227

(0.925, 1.558)
1.190

(0.949, 1.415)
 0.3 0.890

(0.516, 1.434)
0.809

(0.504, 1.313)
0.829

(0.495, 1.317)
0.763

(0.494, 1.077)
1.147

(0.894, 1.451)
1.116

(0.894, 1.314)
 0.4 0.828

(0.353, 1.425)
0.758

(0.418, 1.353)
0.647

(0.346, 1.162)
0.622

(0.376, 0.984)
1.123

(0.877, 1.391)
1.089

(0.883, 1.287)
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 0.5 0.861
(0.298, 1.473)

0.774
(0.355, 1.421)

0.544
(0.235, 1.083)

0.514
(0.287, 0.856)

1.127
(0.873, 1.409)

1.085
(0.882, 1.279)

 0.6 0.867
(0.385, 1.466)

0.735
(0.388, 1.374)

0.650
(0.360, 1.164)

0.609
(0.352, 0.949)

1.150
(0.885, 1.431)

1.103
(0.865, 1.324)

 0.7 0.910
(0.538, 1.511)

0.828
(0.546, 1.286)

0.827
(0.519, 1.280)

0.769
(0.522, 1.051)

1.205
(0.909, 1.580)

1.152
(0.885, 1.409)

 0.8 0.993
(0.699, 1.557)

0.915
(0.661, 1.206)

0.975
(0.668, 1.469)

0.902
(0.639, 1.137)

1.306
(0.971, 1.630)

1.243
(0.945, 1.522)

 0.9 1.113
(0.829, 1.633)

1.046
(0.782, 1.306)

1.092
(0.796, 1.545)

1.028
(0.775, 1.274)

1.555
(1.130, 2.040)

1.470
(1.103, 1.830)

 Average 0.937
(0.556, 1.503)

0.856
(0.553, 1.313)

0.832
(0.531, 1.316)

0.777
(0.526, 1.083)

1.250
(0.975, 1.618)

1.202
(0.973, 1.475)

Panel B: Student-t errors
 0.1 0.816

(0.559, 1.289)
0.777

(0.511, 1.088)
0.801

(0.533, 1.282)
0.752

(0.499, 1.040)
1.255

(0.755, 1.975)
1.186

(0.708, 1.877)
 0.2 0.615

(0.372, 1.049)
0.592

(0.358, 0.849)
0.604

(0.343, 1.022)
0.569

(0.349, 0.832)
1.060

(0.596, 1.836)
0.987

(0.589, 1.821)
 0.3 0.470

(0.245, 0.899)
0.439

(0.237, 0.694)
0.444

(0.240, 0.795)
0.427

(0.230, 0.643)
0.969

(0.504, 1.617)
0.909

(0.478, 1.523)
 0.4 0.381

(0.178, 0.901)
0.336

(0.174, 0.873)
0.336

(0.173, 0.651)
0.316

(0.173, 0.519)
0.949

(0.450, 1.691)
0.958

(0.430, 1.683)
 0.5 0.324

(0.143, 0.841)
0.302

(0.160, 0.923)
0.290

(0.143, 0.589)
0.278

(0.146, 0.467)
1.017

(0.777, 1.292)
0.990

(0.794, 1.210)
 0.6 0.359

(0.160, 0.847)
0.322

(0.150, 0.861)
0.340

(0.154, 0.627)
0.298

(0.146, 0.525)
1.036

(0.773, 1.307)
1.011

(0.794, 1.246)
 0.7 0.457(0.288,

0.900)
0.420

(0.219, 0.746)
0.430

(0.214, 0.754)
0.397

(0.210, 0.671)
1.089

(0.795, 1.379)
1.063

(0.815, 1.307)
 0.8 0.609

(0.372, 0.988)
0.569

(0.333, 0.875)
0.594

(0.356, 0.940)
0.549

(0.331, 0.838)
1.200

(0.853, 1.592)
1.170

(0.534, 2.427)
 0.9 0.853

(0.570, 1.388)
0.801

(0.540, 1.104)
0.824

(0.531, 1.275)
0.773

(0.526, 1.061)
1.288

(0.732, 2.452)
1.090

(0.695, 1.872)
 Average 0.542

(0.320, 1.005)
0.506

(0.298, 0.885)
0.518

(0.298, 0.877)
0.484

(0.29, 0.728)
1.096

(0.726, 1.716)
1.041

(0.679, 1.698)
Panel C: Gamma errors
 0.1 0.769

(0.542, 1.075)
0.682

(0.467, 0.931)
0.769

(0.527, 1.048)
0.670

(0.466, 0.917)
1.247

(0.574, 2.168)
1.152

(0.493, 2.110)
 0.2 0.802

(0.572, 1.144)
0.721

(0.507, 1.037)
0.797

(0.544, 1.076)
0.711

(0.500, 0.953)
1.101

(0.577, 1.951)
1.039

(0.512, 1.791)
 0.3 0.824

(0.560, 1.396)
0.754

(0.493, 1.153)
0.785

(0.512, 1.124)
0.714

(0.475, 0.958)
1.080

(0.630, 1.737)
1.059

(0.804, 1.273)
 0.4 0.853

(0.512, 1.437)
0.799

(0.475, 1.353)
0.745

(0.449, 1.082)
0.666

(0.413, 0.960)
1.080

(0.822, 1.350)
1.039

(0.810, 1.252)
 0.5 0.888

(0.381, 1.467)
0.840

(0.364, 1.481)
0.632

(0.347, 1.006)
0.561

(0.312, 0.879)
1.087

(0.825, 1.354)
1.036

(0.804, 1.255)
 0.6 0.877

(0.322, 1.452)
0.822

(0.322, 1.377)
0.575

(0.237, 1.033)
0.508

(0.266, 0.879)
1.109

(0.857, 1.394)
1.057

(0.819, 1.292)
 0.7 0.889

(0.450, 1.419)
0.810

(0.429, 1.336)
0.716

(0.386, 1.237)
0.677

(0.408, 1.022)
1.158

(0.871, 1.480)
1.106

(0.834, 1.363)
 0.8 1.080

(0.700, 1.603)
0.976

(0.624, 1.394)
1.021

(0.628, 1.534)
0.923

(0.596, 1.272)
1.281

(0.939, 1.639)
1.211

(0.888, 1.493)
 0.9 1.349

(0.937, 1.874)
1.244

(0.852, 1.687)
1.304

(0.911, 1.870)
1.203

(0.823, 1.572)
1.582

(1.144, 2.119)
1.464

(1.051, 1.813)
 Average 0.925

(0.552, 1.424)
0.849

(0.503, 1.301)
0.816

(0.504, 1.218)
0.737

(0.473, 1.041)
1.192

(0.840, 1.720)
1.129

(0.812, 1.551)

This table reports the median of the in-sample MADEs, defined in (16), across DGP replications. The numbers in parenthesis are the
lower 5% and upper 95% quantiles of the 400 corresponding MADEs.

We see that using the asymmetric Laplace distribution as the likelihood achieves the greatest estimation
precision as defined by (16) for the central quantiles under Student-t errors. In this case, the MADEs are around
0.30, while they exceed 0.50 under normal and gamma distributed errors, and sometimes by far. As expected,
the MADEs appear roughly symmetric under normal and Student-t errors, i.e. the estimated MADEs are about
the same whether τ equals 0.1 or 0.9, 0.2 or 0.8, etc. On the contrary, the MADEs for the gamma distribution are
consistently higher in the right tail, e.g. when τ = 0.9. This happens because the distribution is skewed to the
right, meaning that there are relatively fewer observations in the right tail compared to the left tail.
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Of course, increasing the sample size improves the estimation precision at all quantile levels τ. This is readily
seen from the upper 95% MADE quantiles which tend to decrease as T doubles from 120 to 240. Observe further
that the multi-move sampler appears preferable, since these upper 95% limits are systematically lower than
with the single-move sampler. We therefore leave aside the single-move sampler and proceed to the empirical
application with the computationally more efficient multi-move sampler.

Table 3 provides a comparison of the in-sample MADEs of the misspecified QAR(2) model, obtained by
Gibbs sampling and MLE.5 The pattern is clear: even with the misspecified QAR(2) model, the Bayesian ap-
proach yields smaller in-sample median MADEs relative to the MLE approach. Focusing on the averages, we
see that the pattern holds for each T and error distribution.

Table 3: In-sample MADE under various sample sizes and error distributions: misspecified QAR(2) model.

Bayesian inference MLE inference

τ T = 120 T = 240 T = 120 T = 240

 0.1 1.431 (0.914, 2.227) 1.359 (0.832, 2.117) 1.592 (1.167, 2.487) 1.581 (1.224, 2.371)
 0.2 1.256 (0.793, 2.017) 1.269 (0.813, 2.016) 1.392 (1.060, 2.193) 1.376 (1.068, 2.097)
 0.3 1.213 (0.705, 1.973) 1.218 (0.766, 1.935) 1.320 (1.055, 2.089) 1.307 (1.047, 2.025)
 0.4 1.237 (0.718, 2.001) 1.235 (0.728, 1.999) 1.296 (1.036, 2.060) 1.281 (1.030, 2.002)
 0.5 1.262 (0.659, 2.184) 1.259 (0.733, 2.083) 1.297 (1.020, 2.263) 1.279 (1.038, 1.990)
 0.6 1.324 (0.709, 2.308) 1.340 (0.713, 2.630) 1.324 (1.020, 2.409) 1.298 (1.048, 2.445)
 0.7 1.352 (0.759, 2.551) 1.384 (0.773, 2.548) 1.379 (1.049, 2.671) 1.346 (1.062, 2.410)
 0.8 1.366 (0.826, 2.540) 1.360 (0.770, 2.553) 1.483 (1.110, 2.711) 1.449 (1.077, 2.646)
 0.9 1.654 (0.897, 3.270) 1.521 (0.829, 3.072) 1.752 (1.286, 3.726) 1.703 (1.231, 3.574)
 Average 1.343 (0.775, 2.341) 1.327 (0.773, 2.328) 1.426 (1.089, 2.512) 1.402 (1.092, 2.395)
Panel B: Student-t errors
 0.1 1.417 (0.979, 1.978) 1.376 (1.027, 1.856) 1.607 (1.157, 2.589) 1.600 (1.215, 2.528)
 0.2 1.173 (0.856, 1.510) 1.147 (0.902, 1.457) 1.348 (0.994, 2.174) 1.345 (1.068, 2.130)
 0.3 1.074 (0.807, 1.370) 1.047 (0.839, 1.275) 1.241 (0.922, 2.033) 1.228 (0.992, 1.973)
 0.4 1.031 (0.780, 1.302) 1.007 (0.805, 1.227) 1.193 (0.902, 1.958) 1.179 (0.957, 1.893)
 0.5 1.043 (0.419, 2.088) 1.039 (0.408, 2.131) 1.184 (0.904, 1.952) 1.170 (0.949, 1.880)
 0.6 1.146 (0.413, 2.634) 1.105 (0.437, 2.393) 1.204 (0.918, 1.963) 1.191 (0.972, 1.912)
 0.7 1.186 (0.479, 2.699) 1.114 (0.442, 2.602) 1.259 (0.961, 2.064) 1.251 (1.009, 2.002)
 0.8 1.243 (0.567, 2.843) 1.185 (0.900, 1.504) 1.398 (1.018, 2.309) 1.383 (1.053, 2.182)
 0.9 1.505 (1.024, 2.023) 1.468 (1.086, 1.880) 1.717 (1.209, 2.815) 1.710 (1.280, 2.638)
 Average 1.202 (0.702, 2.049) 1.165 (0.760, 1.813) 1.350 (0.999, 2.206) 1.340 (1.055, 2.126)
Panel C: Gamma errors
 0.1 1.366 (0.992, 1.754) 1.320 (0.978, 1.609) 1.594 (1.151, 2.542) 1.560 (1.106, 2.377)
 0.2 1.162 (0.878, 1.449) 1.126 (0.833, 1.346) 1.345 (1.014, 2.138) 1.317 (0.950, 2.051)
 0.3 1.106 (0.845, 1.386) 1.088 (0.573, 1.896) 1.278 (0.984, 2.055) 1.248 (0.939, 1.974)
 0.4 1.128 (0.658, 1.806) 1.093 (0.602, 1.701) 1.259 (0.980, 2.023) 1.227 (0.960, 1.949)
 0.5 1.185 (0.626, 2.049) 1.159 (0.634, 1.951) 1.262 (0.994, 2.034) 1.227 (0.977, 1.947)
 0.6 1.310 (0.671, 2.575) 1.277 (0.653, 2.427) 1.284 (1.007, 2.102) 1.247 (0.979, 1.998)
 0.7 1.362 (0.720, 2.507) 1.398 (0.720, 2.631) 1.338 (1.000, 2.172) 1.294 (0.988, 2.067)
 0.8 1.449 (0.867, 2.540) 1.381 (0.785, 2.578) 1.454 (1.048, 2.364) 1.407 (1.022, 2.199)
 0.9 1.694 (1.109, 2.659) 1.598 (1.011, 2.568) 1.752 (1.229, 2.844) 1.649 (1.142, 2.502)
 Average 1.306 (0.818, 2.080) 1.271 (0.754, 2.078) 1.396 (1.045, 2.253) 1.353 (1.007, 2.118)

This table reports the median of the in-sample MADEs, defined in (16), across DGP replications. The numbers in parenthesis are the
lower 5% and upper 95% quantiles of the 400 corresponding MADEs.

Table 4–Table 6 provide an assessment of the out-of-sample accuracy of the model forecasts. For this purpose
we use the DGP in (14) to simulate trajectories of length T + 1, and then, using only the data up to time T, we
forecast the quantiles of yT + 1. Table 4 reports the average of 𝕀[ ̂𝑠𝑇+1 = 𝑠𝑇+1] across DGP replications. The multi-
move sampler achieves the highest out-of-sample proportion of correctly identified states across sample sizes
and error distributions. For instance, under normal errors, the multi-move sampler is able to identify 74.9% of
states at time T + 1 = 241 (on average across quantiles), which is higher than the single-move sampler (69.4%)
and the MLE approach (71.3%).

Table 4: Out-of-sample proportion of correctly identified states under various sample sizes and error distributions: cor-
rectly specified MSQAR(3, 2) model.
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Bayesian inference MLE inference

Single-move sampler Multi-move sampler

τ T = 120 T = 240 T = 120 T = 240 T = 120 T = 240

Panel A: Normal errors
 0.1 0.670 0.700 0.682 0.720 0.700 0.710
 0.2 0.650 0.700 0.698 0.720 0.708 0.740
 0.3 0.628 0.680 0.708 0.738 0.693 0.705
 0.4 0.630 0.660 0.755 0.762 0.708 0.740
 0.5 0.610 0.620 0.752 0.780 0.633 0.683
 0.6 0.622 0.675 0.742 0.782 0.668 0.683
 0.7 0.628 0.720 0.702 0.750 0.673 0.730
 0.8 0.668 0.730 0.705 0.742 0.668 0.703
 0.9 0.712 0.760 0.712 0.748 0.655 0.723
 Average 0.646 0.694 0.717 0.749 0.678 0.713
Panel B: Student-t errors
 0.1 0.740 0.770 0.735 0.775 0.505 0.565
 0.2 0.745 0.792 0.770 0.795 0.563 0.548
 0.3 0.768 0.825 0.782 0.830 0.535 0.523
 0.4 0.765 0.825 0.818 0.862 0.513 0.550
 0.5 0.790 0.830 0.832 0.862 0.530 0.580
 0.6 0.812 0.832 0.840 0.865 0.560 0.548
 0.7 0.802 0.845 0.828 0.860 0.588 0.578
 0.8 0.805 0.825 0.805 0.828 0.638 0.585
 0.9 0.782 0.805 0.790 0.805 0.623 0.590
 Average 0.779 0.817 0.800 0.831 0.562 0.563
Panel C: Gamma errors
 0.1 0.740 0.740 0.740 0.770 0.623 0.625
 0.2 0.712 0.715 0.735 0.745 0.623 0.608
 0.3 0.658 0.700 0.748 0.765 0.578 0.575
 0.4 0.590 0.655 0.760 0.778 0.595 0.595
 0.5 0.608 0.630 0.752 0.768 0.573 0.600
 0.6 0.605 0.650 0.762 0.770 0.575 0.570
 0.7 0.622 0.692 0.728 0.762 0.585 0.635
 0.8 0.630 0.715 0.688 0.758 0.663 0.588
 0.9 0.680 0.750 0.698 0.755 0.633 0.660
 Average 0.649 0.694 0.735 0.763 0.605 0.606

For each T and τ, the unconstrained MSQAR model is used to obtain an out-of-sample forecast ̂𝑠𝑇+1 of the state at time T + 1. This table
shows the average of 𝕀[ ̂𝑠𝑇+1 = 𝑠𝑇+1] across 400 replications of each DGP.

Table 5: Out-of-sample MADE under various sample sizes and error distributions: correctly specified MSQAR(3, 2)
model.

Unconstrained Bayesian
inference

Constrained Bayesian
inference

MLE inference

τ T = 120 T = 240 T = 120 T = 240 T = 120 T = 240

Panel A: Normal errors
 0.1 1.199

(0.389, 3.422)
1.195

(0.302, 2.700)
1.137

(0.306, 2.742)
1.043

(0.247, 2.282)
1.442

(0.609, 3.065)
1.421

(0.590, 2.972)
 0.2 1.117

(0.421, 3.016)
1.078

(0.357, 2.505)
1.036

(0.298, 2.378)
1.025

(0.242, 2.015)
1.224

(0.475, 3.021)
1.223

(0.462, 2.946)
 0.3 1.066

(0.462, 2.063)
0.975

(0.401, 2.063)
0.946

(0.278, 1.902)
0.932

(0.241, 1.517)
1.121

(0.403, 3.012)
1.119

(0.384, 2.781)
 0.4 0.880

(0.283, 2.186)
0.853

(0.259, 2.184)
0.818

(0.162 1.924)
0.798

(0.122, 1.739)
1.076

(0.329, 3.093)
1.084

(0.316, 2.615)
 0.5 0.794

(0.236, 1.682)
0.782

(0.209, 1.671)
0.686

(0.114, 1.917)
0.640

(0.082, 1.505)
1.091

(0.296, 3.042)
1.075

(0.281, 2.627)
 0.6 0.939

(0.327, 2.142)
0.774

(0.269, 2.122)
0.792

(0.151, 2.086)
0.701

(0.113, 2.062)
1.141

(0.354, 3.061)
1.074

(0.335, 2.689)
 0.7 1.109

(0.555, 2.264)
0.926

(0.491, 2.174)
0.955

(0.220, 2.204)
0.848

(0.193, 2.155)
1.215

(0.462, 3.071)
1.118

(0.446, 2.820)
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 0.8 1.233
(0.598, 2.354)

1.002
(0.539, 2.344)

1.104
(0.303, 2.277)

0.992
(0.277, 1.895)

1.333
(0.499, 3.045)

1.203
(0.481, 2.909)

 0.9 1.376
(0.551, 2.909)

1.154
(0.483, 2.479)

1.211
(0.252, 2.762)

1.091
(0.218, 2.387)

1.635
(0.572, 3.078)

1.439
(0.560, 2.975)

 Average 1.079
(0.424, 2.344)

0.971
(0.368, 2.129)

0.965
(0.231, 2.265)

0.897
(0.193, 1.950)

1.253
(0.451, 3.047)

1.195
(0.435, 2.824)

Panel B: Student-t errors
 0.1 1.134

(0.511, 3.082)
0.948

(0.423, 2.752)
0.948

(0.232, 2.395)
0.838

(0.181, 2.206)
1.401

(0.514, 2.975)
1.288

(0.499, 2.902)
 0.2 0.885

(0.446, 2.359)
0.761

(0.354, 1.906)
0.752

(0.279, 1.870)
0.644

(0.230, 1.223)
1.207

(0.464, 3.087)
1.181

(0.446, 3.027)
 0.3 0.824

(0.424, 1.956)
0.637

(0.368, 1.926)
0.631

(0.208, 1.851)
0.498

(0.167, 1.193)
1.094

(0.435, 3.018)
1.096

(0.415, 2.973)
 0.4 0.718

(0.298, 1.887)
0.526

(0.230, 1.815)
0.509

(0.131, 1.825)
0.384

(0.102, 1.478)
1.067

(0.300, 2.948)
1.034

(0.286, 2.833)
 0.5 0.669

(0.307, 1.796)
0.528

(0.254, 1.416)
0.454

(0.130, 1.791)
0.305

(0.079, 1.419)
1.093

(0.344, 2.860)
1.042

(0.327, 2.830)
 0.6 0.639

(0.222, 1.706)
0.540

(0.152, 1.606)
0.461

(0.118, 1.876)
0.334

(0.070, 1.448)
1.122

(0.350, 2.978)
1.071

(0.332, 2.873)
 0.7 0.721

(0.494, 2.180)
0.616

(0.459, 1.688)
0.552

(0.241, 1.839)
0.408

(0.189, 1.227)
1.166

(0.424, 3.041)
1.135

(0.414, 2.988)
 0.8 0.868

(0.470, 2.623)
0.760

(0.432, 1.949)
0.699

(0.260, 1.995)
0.561

(0.218, 1.175)
1.289

(0.494, 2.985)
1.252

(0.479, 2.927)
 0.9 1.116

(0.506, 3.209)
0.981

(0.436, 2.753)
0.991

(0.217, 2.736)
0.809

(0.183, 2.335)
1.386

(0.609, 2.968)
1.266

(0.597, 2.912)
 Average 0.842

(0.409, 2.266)
0.699

(0.345, 1.979)
0.666

(0.202, 2.019)
0.531

(0.158, 1.522)
1.203

(0.453, 2.940)
1.152

(0.438, 2.877)
Panel C: Gamma errors
 0.1 0.882

(0.449, 2.542)
0.802

(0.370, 1.742)
0.763

(0.211, 0.915)
0.688

(0.176, 0.466)
1.248

(0.606, 2.828)
1.235

(0.590, 2.803)
 0.2 0.888

(0.627, 2.298)
0.836

(0.543, 1.531)
0.794

(0.285, 0.902)
0.731

(0.231, 0.516)
1.137

(0.507, 2.671)
1.069

(0.495, 2.601)
 0.3 0.906

(0.435, 1.764)
0.811

(0.366, 1.753)
0.797

(0.312, 0.945)
0.738

(0.266, 0.410)
1.071

(0.351, 2.752)
1.043

(0.339, 2.712)
 0.4 0.856

(0.392, 2.063)
0.795

(0.334, 1.892)
0.803

(0.161, 1.956)
0.768

(0.110, 1.779)
1.072

(0.369, 2.553)
1.027

(0.356, 2.488)
 0.5 0.846

(0.305, 2.313)
0.810

(0.235, 2.113)
0.727

(0.163, 1.900)
0.710

(0.113, 1.490)
1.083

(0.247, 2.705)
1.034

(0.235, 2.605)
 0.6 0.822

(0.289, 2.064)
0.776

(0.200, 1.638)
0.650

(0.178, 1.732)
0.667

(0.123, 1.287)
1.076

(0.429, 2.679)
1.078

(0.418, 2.624)
 0.7 1.001

(0.437, 2.199)
0.891

(0.359, 1.990)
0.839

(0.282, 2.172)
0.800

(0.229, 1.827)
1.132

(0.483, 2.843)
1.136

(0.462, 2.738)
 0.8 1.289

(0.397, 2.562)
1.052

(0.306, 2.526)
1.139

(0.294, 2.593)
1.016

(0.247, 2.208)
1.263

(0.512, 3.114)
1.267

(0.473, 3.041)
 0.9 1.501

(0.631, 3.798)
1.378

(0.578, 3.228)
1.402

(0.257, 3.204)
1.302

(0.220, 2.909)
1.540

(0.565, 2.998)
1.525

(0.503, 2.963)
 Average 0.999

(0.440, 2.379)
0.906

(0.366, 2.045)
0.879

(0.238, 1.813)
0.824

(0.191, 1.432)
1.180

(0.422, 2.806)
1.157

(0.398, 2.739)

For each T, the MSQAR model is used to obtain an out-of-sample forecast of the τth quantile of yT + 1. This table reports the median of the
out-of-sample MADEs across DGP replications. The numbers in parenthesis are the lower 5% and upper 95% quantiles of the 400
corresponding MADEs. The Bayesian inferences are based on the multi-move sampler.

Table 6: Out-of-sample MADE under various sample sizes and error distributions: misspecified QAR(2) model.

Bayesian inference MLE inference

τ T = 120 T = 240 T = 120 T = 240

Panel A: Normal errors
 0.1 1.519 (0.655, 3.128) 1.433 (0.613, 2.948) 1.786 (0.902, 3.313) 1.739 (0.714, 3.193)
 0.2 1.323 (0.591, 2.954) 1.373 (0.541, 2.809) 1.575 (0.766, 3.069) 1.539 (0.660, 2.899)
 0.3 1.276 (0.472, 2.628) 1.270 (0.431, 2.458) 1.456 (0.870, 2.878) 1.399 (0.684, 2.748)
 0.4 1.280 (0.423, 2.686) 1.353 (0.374, 2.476) 1.395 (0.850, 2.811) 1.365 (0.688, 2.741)
 0.5 1.299 (0.485, 2.717) 1.373 (0.439, 2.572) 1.326 (0.536, 2.777) 1.368 (0.351, 2.552)

14

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Liu and Luger

 0.6 1.348 (0.475, 2.866) 1.412 (0.417, 2.696) 1.382 (0.616, 2.906) 1.283 (0.445, 2.731)
 0.7 1.447 (0.610, 2.650) 1.439 (0.556, 2.410) 1.494 (0.793, 2.875) 1.398 (0.684, 2.765)
 0.8 1.471 (0.616, 2.835) 1.406 (0.560, 2.765) 1.506 (0.550, 2.935) 1.488 (0.402, 2.755)
 0.9 1.876 (0.684, 3.178) 1.496 (0.631, 2.928) 1.837 (0.872, 3.251) 1.598 (0.762, 3.191)
 Average 1.427 (0.557, 2.849) 1.395 (0.507, 2.674) 1.528 (0.751, 2.979) 1.464 (0.599, 2.842)
Panel B: Student-t errors
 0.1 1.539 (0.574, 3.062) 1.412 (0.524, 3.058) 1.776 (0.818, 3.237) 1.722 (0.627, 3.032)
 0.2 1.298 (0.481, 2.721) 1.186 (0.437, 2.546) 1.517 (0.816, 2.851) 1.451 (0.642, 2.756)
 0.3 1.136 (0.492, 2.531) 1.083 (0.441, 2.341) 1.373 (0.789, 2.646) 1.320 (0.642, 2.581)
 0.4 1.102 (0.493, 2.427) 1.052 (0.436, 2.287) 1.311 (0.596, 2.627) 1.267 (0.492, 2.472)
 0.5 1.195 (0.515, 2.464) 1.212 (0.461, 2.389) 1.293 (0.614, 2.644) 1.255 (0.432, 2.643)
 0.6 1.154 (0.425, 2.679) 1.326 (0.380, 2.579) 1.298 (0.515, 2.729) 1.262 (0.349, 2.545)
 0.7 1.278 (0.642, 2.943) 1.236 (0.602, 2.908) 1.340 (0.667, 2.963) 1.310 (0.550, 2.702)
 0.8 1.422 (0.625, 3.099) 1.348 (0.569, 3.054) 1.479 (0.820, 3.209) 1.442 (0.680, 2.744)
 0.9 1.540 (0.545, 3.198) 1.529 (0.487, 3.068) 1.756 (0.886, 3.392) 1.752 (0.688, 3.207)
 Average 1.296 (0.528, 2.796) 1.265 (0.497, 2.674) 1.460 (0.716, 2.911) 1.420 (0.565, 2.732)
Panel C: Gamma errors
 0.1 1.316 (0.538, 3.098) 1.343 (0.495, 2.898) 1.625 (0.741, 3.138) 1.587 (0.611, 2.937)
 0.2 1.133 (0.598, 2.696) 1.114 (0.541, 2.686) 1.498 (0.783, 2.901) 1.392 (0.644, 2.736)
 0.3 1.121 (0.522, 2.911) 1.099 (0.470, 2.836) 1.357 (0.842, 2.936) 1.286 (0.735, 2.766)
 0.4 1.158 (0.378, 2.841) 1.165 (0.329, 2.651) 1.277 (0.487, 2.996) 1.227 (0.329, 2.948)
 0.5 1.259 (0.552, 2.923) 1.236 (0.503, 2.673) 1.254 (0.739, 2.983) 1.205 (0.545, 2.888)
 0.6 1.394 (0.348, 2.706) 1.332 (0.295, 2.706) 1.353 (0.694, 2.866) 1.296 (0.564, 2.841)
 0.7 1.358 (0.581, 2.892) 1.492 (0.530, 2.702) 1.386 (0.772, 3.047) 1.369 (0.593, 2.890)
 0.8 1.401 (0.608, 3.050) 1.373 (0.556, 2.993) 1.493 (0.649, 3.130) 1.432 (0.544, 3.044)
 0.9 1.584 (0.621, 3.133) 1.622 (0.569, 3.093) 1.751 (0.770, 3.458) 1.694 (0.634, 3.388)
 Average 1.303 (0.516, 2.922) 1.308 (0.464, 2.808) 1.443 (0.708, 3.059) 1.387 (0.564, 2.966)

For each T, the linear QAR model is used to obtain an out-of-sample forecast of the τth quantile of yT + 1. This table reports the median of
the out-of-sample MADEs across DGP replications. The numbers in parenthesis are the lower 5% and upper 95% quantiles of the 400
corresponding MADEs.

Table 5 compares the out-of-sample MADEs obtained with the unconstrained and constrained multi-move
Gibbs samplers, as well as those obtained using MLE approach. The Bayesian methods clearly dominate the
MLE approach with smaller MADEs across the board. Table 5 also makes clear the gains obtained by imposing
the non-crossing restriction. Indeed for each sample size and error distribution, we see the average MADEs
decrease when the non-crossing restriction is imposed. When the errors are Student-t for instance, the con-
strained sampler achieves a median MADE at time T + 1 = 241 of 0.531, which is lower than its unconstrained
counterpart (0.700) and the MLE approach (1.152).

Table 6 shows the out-of-sample MADEs obtained under the misspecified QAR(2) model, estimated with
the Bayesian and MLE methods. Echoing the pattern already revealed in Table 3, we see from Table 6 that the
good performance of the Bayesian approach continues to hold out of sample, despite the QAR model misspec-
ification. In light of these results, we leave aside the MLE method and move on to the empirical application
with the Gibbs sampling approach. For the MSQAR, we proceed with the multi-move sampler.

6 Empirical application

In this section we extend the Garcia and Perron (1996) analysis of structural changes in the conditional mean
and variance of the U.S. real interest rate. Garcia and Perron (1996) found that the U.S. real interest rate can be
described by a Markov-switching model with three states. Specifically, their results suggest that the conditional
mean and variances are different for the periods 1961–1973, 1973–1980, and 1980–1986. The proposed MSQAR
model allows us to go beyond the first two moments and examine how the presence of Markov-switching
regimes affects the quantiles of the conditional distribution. For instance, are the tails affected the same way
as the centre of the distribution? To examine this question, we began by expanding their sample period to
cover 1947Q1 to 2015Q1. A measure of the U.S. real interest rate was then constructed using quarterly data on
the nominal interest rate and the consumer price index, both obtained from the FRED database at the Federal
Reserve Bank of St. Louis. The resulting time series of 273 observations is plotted in Figure 1. The usefulness of
the MSQAR model is examined in terms of its in-sample fit and out-of-sample forecasting ability.
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Figure 1: U.S. quarterly real interest rate from 1947Q1 to 2015Q1.

6.1 In-sample estimation results

We estimated the MSQAR(K, p) model by letting the number of lags vary as p = 1, 2, 3 and the number of
regimes vary as K = 1, …, 5. Recall that when K = 1, the MSQAR model reduces to the linear QAR(p) with
𝜇(𝜏) = 𝑐(𝜏)/( �1 − ∑𝑝

𝑗=1 𝜙𝑗(𝜏)) �. The models were applied at quantile levels τ = 0.1, 0.2, …, 0.9. In each case, the
Gibbs sampler was used to perform the full Bayesian calculations with priors set as in the previous section.
Table 7 shows the log marginal likelihood for each model at each quantile level, and the last column shows the
average log marginal likelihood across the values of τ. Starting with the Koenker and Xiao (2006) linear QAR
specifications, we find that p = 3 lags is generally preferable.6 Then, allowing for Markov-switching effects, we
see from Table 7 that on average the marginal likelihood of the MSQAR peaks with K = 3 and then decreases
with K = 4 and K = 5. So holding p = 3 lags, we find that K = 3 regimes provides the best MSQAR specification
with an average log marginal likelihood of −704.

Table 7: Comparison of log marginal likelihoods.

τ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average

Panel A: QAR(p)
 1 −820.8 −764.2 −730.9 −708.2 −694.9 −692.6 −700.1 −721.4 −760.5 −732.6
 2 −813.7 −764.2 −731.9 −715.0 −706.6 −705.9 −714.1 −732.3 −781.7 −740.6
 3 −792.1 −733.2 −704.2 −690.5 −684.8 −686.3 −698.6 −721.7 −770.6 −720.2
Panel B: MSQAR(2, p)
 1 −790.5 −732.9 −703.6 −690.1 −687.8 −693.4 −704.8 −731.1 −794.3 −725.4
 2 −781.4 −729.3 −703.3 −691.5 −690.5 −696.8 −710.8 −741.1 −808.1 −728.1
 3 −773.5 −724.5 −696.9 −683.2 −679.9 −685.3 −699.6 −728.0 −784.5 −717.3
Panel C: MSQAR(3, p)
 1 −807.1 −744.5 −711.4 −695.5 −690.2 −692.5 −701.5 −716.3 −755.1 −723.8
 2 −775.4 −720.9 −695.8 −684.2 −680.9 −683.8 −693.3 −709.8 −744.5 −709.8
 3 −766.2 −714.4 −688.7 −676.9 −673.8 −677.3 −689.6 −707.4 −741.4 −704.0
Panel D: MSQAR(4, p)
 1 −779.6 −731.7 −705.3 −699.2 −690.1 −692.7 −711.6 −725.7 −770.5 −722.9
 2 −752.1 −711.2 −691.3 −683.0 −679.8 −695.1 −700.5 −718.1 −757.3 −709.8
 3 −746.7 −706.1 −686.7 −684.9 −672.3 −677.1 −693.4 −716.9 −758.2 −704.7
Panel E: MSQAR(5, p)
 1 −777.7 −732.8 −715.3 −687.8 −688.9 −699.8 −701.9 −736.3 −765.7 −722.9
 2 −792.5 −734.2 −707.3 −686.0 −677.4 −689.6 −710.9 −729.4 −775.9 −722.6
 3 −744.2 −707.1 −693.1 −685.3 −672.7 −691.3 −689.9 −720.6 −758.4 −707.0

For each probability level τ, this table reports the log marginal likelihood values attained by the MSQAR(K, p) specification with number
of regimes equal to K = 1, 2, 3 and number of lags equal to p = 1, 2, 3. Recall that the QAR(p) corresponds to the MSQAR(1, p). The last
column reports the log marginal likelihood averaged across values of τ.
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Table 8 presents the posterior inference results for the unconstrained MSQAR(3, 3) models. For each model
at quantile level τ, the table reports the posterior mean for each parameter, along with the corresponding nu-
merical standard error (NSE) and the value of the Geweke (1992) test statistic. If the output of the Markov
chain is compatible with stationarity, then this statistic follows a standard normal distribution. The generally
insignificant values in Table 8 indicate that convergence to the stationary distribution was achieved. The esti-
mated transition probabilities are seen to vary slightly as τ ranges from 0.1 to 0.9. From Table 7 we see that the
MSQAR(3, 3) at τ = 0.5 is the best model (with a log marginal likelihood of −673.8) and the corresponding esti-
mates of the state transition probabilities can be read from Table 8. So the posterior state classification (shown
in Figure 2) and our stepwise re-estimation procedure proceeded with τi* = 0.5.
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Figure 2: Posterior state classification obtained with the MSQAR(3, 3) model at 𝜏𝑖∗ = 0.5.

To economize on space we present a graphical comparison of the parameter estimates for the considered
models. Figure 3 and Figure 4 correspond to the unconstrained and constrained versions of the QAR(3) models,
respectively. We see immediately that both versions yield very similar point estimates (posterior means). The
non-crossing restriction thus seems to hold fairly well under this linear specification. Note, however, that the
reported 95% credible intervals appear differently when the non-crossing restriction is explicitly imposed. In-
deed, the “bow-tie” pattern seen in Figure 4 (and Figure 6) simply reflects the fact that the stepwise re-estimation
procedure conditions on more information as |𝜏𝑗 − 𝜏𝑖∗ | increases. The QAR(3) specification reveals a quantile
regression location parameter μ1 that increases monotonically with τ. The autoregressive parameters ϕ2 and ϕ3
suggest that the dynamics of the interest rate differ across quantile levels, even though ϕ1 itself doesn’t vary
much with τ.

Figure 3: Unconstrained QAR(3) model parameter estimates (posterior means) across quantile probability levels τ. The
dashed lines connect the posterior means, while the shaded areas delimit the 95% credible intervals.
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Figure 4: Non-crossing QAR(3) model parameter estimates (posterior means) across quantile probability levels τ. The
dashed lines connect the posterior means, while the shaded areas delimit the 95% credible intervals.

Figure 5 and Figure 6 show the estimates of μi and ϕi, i = 1, 2, 3, under the MSQAR(3, 3) specifications.
In fact Figure 5 is just a graphical depiction of the information already presented in Table 8, while Figure 6
corresponds to the non-crossing version of the Markov-switching specification. We see that the estimated values
of μ1, μ2, μ3 are well separated, which indicates that the regimes are well identified. The imposition of the non-
crossing restriction clearly affects the estimates of the autoregressive parameters. The posterior mean estimates
in Figure 5 reveal that: (i) ϕ1 generally increases with τ; (ii) ϕ2 has no clear pattern; and (iii) ϕ3 follows an inverted
U-shaped pattern. On the contrary all three estimated autoregressive parameters appear more disciplined in
Figure 6, each conforming more to an inverted U-shaped pattern.
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Figure 5: Unconstrained MSQAR(3, 3) model parameter estimates (posterior means) across quantile probability levels τ.
The dashed lines connect the posterior means, while the shaded areas delimit the 95% credible intervals.
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Figure 6: Non-crossing MSQAR(3, 3) model parameter estimates (posterior means) across quantile probability levels τ.
The dashed lines connect the posterior means, while the shaded areas delimit the 95% credible intervals.

The estimation results can also be gleaned from Figure 7–Figure 10, which show the fitted quantiles for the
linear QAR and the MSQAR specifications. The unconstrained quantiles are shown in Figure 7 and Figure 9,
while the constrained ones are in Figure 8 and Figure 10. Although Figure 7 and Figure 8 appear quite similar,
there are in fact three occurrences of crossing quantiles in Figure 7 with the QAR models: once between the
quantiles at levels 0.2 and 0.3 in 2008Q1, once between the quantiles at levels 0.5 and 0.6 in 2008Q2, and once
between the quantiles at levels 0.8 and 0.9 in 2008Q1. By construction, the fitted quantiles in Figure 8 have no
crossings whatsoever.

Figure 7: Unconstrained conditional quantiles estimated with the QAR(3) models, specified for τ = 0.1, …, 0.9. The thick
black line is the real interest rate series, and the light grey lines are the 9 estimated conditional quantiles from τ = 0.1
(lowest grey line) to τ = 0.9 (highest grey line).

Figure 8: Non-crossing conditional quantiles estimated with the QAR(3) models, specified for τ = 0.1, …, 0.9. The thick
black line is the real interest rate series, and the light grey lines are the 9 estimated conditional quantiles from τ = 0.1
(lowest grey line) to τ = 0.9 (highest grey line).
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Figure 9: Unconstrained conditional quantiles estimated with the MSQAR(3, 3) models, specified for τ = 0.1, …, 0.9. The
thick black line is the real interest rate series, and the light grey lines are the 9 estimated conditional quantiles from τ =
0.1 (lowest grey line) to τ = 0.9 (highest grey line).

Figure 10: Non-crossing conditional quantiles estimated with the MSQAR(3, 3) models, specifed for τ = 0.1, …, 0.9. The
thick black line is the real interest rate series, and the light grey lines are the 9 estimated conditional quantiles from τ =
0.1 (lowest grey line) to τ = 0.9 (highest grey line).

As Koenker and Xiao (2006), §4 explain, the crossing problem is potentially more acute in QAR models than
in ordinary quantile regressions with exogenous covariates, since the support of the regressors is determined
within the autoregressive model. So perhaps not surprisingly the estimated quantiles under the non-linear
MSQAR specification cross 15 times. Among these, the most notable occurrences in Figure 9 are the 8 crossings
between the quantiles at levels 0.7 and 0.8 in 1949Q2, 1949Q3, 1949Q4, 1955Q2, 1981Q3, 1989Q2, 2001Q2, and
2008Q2. Figure 10 shows the refitted MSQAR(3, 3) quantiles under the non-crossing restriction. Comparing
the MSQAR quantiles in Figure 10 with the QAR quantiles in Figure 8 shows the improvements in terms of fit
achieved with the non-linear specification. In line with Garcia and Perron (1996), a Markov-switching model
(subject to the non-crossing quantile restriction) appears to better capture the short-term dynamics of the real
interest rate.

Another interesting model assessment is a test of correct quantile specification at all quantile levels τ = 0.1,
0.2, …, 0.9, jointly. For this purpose, we use the test procedure of Escanciano and Velasco (2010). Since this test
applies to both in-sample predictions and out-of-sample forecasts, we present the outcomes all together in the
next section. The results (in Table 11) show the importance of imposing the non-crossing quantile restriction to
achieve a correct MSQAR specification.
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6.2 Out-of-sample forecasting results

In order to examine the out-of-sample forecasting performance of the MSQAR model, we used a 150-quarter
rolling window over the sample period to produce one-quarter ahead forecasts. This results in 123 sets of out-of-
sample quantile forecasts at levels τ = 0.1, 0.2, …, 0.9 from 1984Q3 to 2015Q1. To reduce the computational cost,
we kept τi* fixed at 0.5 in the procedure for computing the predicted state classifications and the non-crossing
predicted quantiles. The quantile forecasts in any given quarter were then made conditional on the prediction
of the next quarter’s most likely regime.

If we let 𝑄𝑦𝑡+1
(𝜏) denote the forecast of yt + 1’s quantile at level τ, then an ideal forecast would be such that

Pr(𝑦𝑡+1 ≤ 𝑄𝑦𝑡+1
(𝜏) | 𝔉𝑡) = 𝜏,

where 𝔉t is the information set available at time t. This is the fundamental building block used to devise back-
tests of value-at-risk (VaR) forecasting models; see Kupiec (1995), Christoffersen (1998), Engle and Manganelli
(2004), Escanciano and Velasco (2010), and Gaglianone et al. (2011). Indeed, a VaR corresponds to a conditional
quantile of a financial loss distribution. Following the VaR backtesting literature, we first computed the viola-
tion rate ̂𝜏, defined as the number of quantile exceedances (violations) divided by the evaluation sample size.
As in Gerlach, Chen, and Chan (2011), the quantile forecasting performances can be summarized with the ratios

̂𝜏/𝜏 for each model, which ideally should be close to 1. Otherwise if ̂𝜏/𝜏 < 1, then the conditional quantile is
underestimated, while a violation ratio ̂𝜏/𝜏 > 1 means that the conditional quantile is overestimated.

Table 9 reports the out-of-sample quantile violation ratios for the unconstrained and non-crossing versions
of the QAR(3) and MSQAR(3, 3) models. For each model, the last column reports the average of the violation
ratios across all 9 quantile levels τ. In general, we see that imposing the non-crossing restriction improves the
quantile forecasts by bringing their violation ratios closer to 1. Looking at the last column, for instance, we
see that the average violation ratio decreases from 1.2 to 1.174 for the QAR(3) model, and from 1.086 to 1.037
for the MSQAR(3, 3) model. Among the four specifications, the best one is clearly the MSQAR(3, 3) under the
non-crossing restriction. This makes clear the value added of restricting the quantile forecasts to not cross one
another in addition to allowing for Markov-switching effects. A detailed examination of Table 9 suggests that
the QAR model performs well for the middle quantiles (τ = 0.5, 0.6, 0.7) while the MSQAR offers improvements
for the tails of the conditional distribution.

Table 9: Out-of-sample quantile violation ratios.

τ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average

Panel A: Unconstrained models
 QAR(3) 1.951 1.504 1.301 1.138 1.024 1.003 0.987 0.965 0.930 1.200
 MSQAR(3, 3) 1.382 1.239 1.165 0.996 0.959 1.016 1.034 1.026 0.958 1.086
Panel B: Constrained models
 QAR(3) 1.951 1.382 1.219 1.097 1.024 1.016 0.964 0.965 0.949 1.174
 MSQAR(3, 3) 1.220 0.989 1.328 1.077 0.959 0.967 0.906 0.915 0.976 1.037

This table reports the ratios 𝜏̂/𝜏, where 𝜏̂ is the empirical violation rate observed out of sample and τ is the nominal quantile level. At
each quantile level, the bold entries indicate the model whose ratio is closest to the ideal value of one. The last column reports the average
of the ratios across quantile levels.

The forecasting gains were further assessed by testing their statistical significance. Table 10 reports the p-
values associated with tests of the null hypothesis of a correct quantile specification at level τ. Results are re-
ported for the unconditional coverage (UC) test of Kupiec (1995), the conditional coverage test (CC) of Christof-
fersen (1998), the dynamic quantile (DQ) test of Engle and Manganelli (2004) using four lags, and the quantile
regression-based test for value-at-risk models (VQR) of Gaglianone et al. (2011). These tests are quite standard
in the VaR forecast evaluation literature. Looking simply at the number of test outcomes that are significant at
the nominal 5% level (bold entries), we see from Table 10 that the greatest benefits come when moving from the
linear QAR model to the non-linear MSQAR model. Indeed there are 19 instances in which the unconstrained
QAR model is rejected, while there are only 2 such instances for the unconstrained MSQAR model.

Table 10: Marginal quantile specification tests: out-of-sample results.

τ = 0.1 τ = 0.2 τ = 0.3
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UC CC DQ VQR UC CC DQ VQR UC CC DQ VQR

Panel A: Unconstrained models
 QAR(3) 0.00 0.01 0.39 0.02 0.01 0.02 0.70 0.02 0.03 0.02 0.67 0.02
 MSQAR(3, 3) 0.18 0.20 0.87 0.68 0.82 0.81 0.22 0.93 0.24 0.14 0.45 0.33
Panel B: Constrained models
 QAR(3) 0.00 0.00 0.43 0.00 0.04 0.06 0.17 0.11 0.12 0.03 0.21 0.27
 MSQAR(3, 3) 0.43 0.70 0.15 0.30 0.33 0.20 0.77 0.59 0.24 0.11 0.40 0.33

τ = 0.4 τ = 0.5 τ = 0.6
UC CC DQ VQR UC CC DQ VQR UC CC DQ VQR

Panel C: Unconstrained models
 QAR(3) 0.21 0.01 0.77 0.29 0.79 0.00 0.91 0.12 0.97 0.01 0.93 0.00
 MSQAR(3, 3) 0.97 0.27 0.68 0.37 0.65 0.17 0.96 0.03 0.82 0.60 0.35 0.03
Panel D: Constrained models
 QAR(3) 0.38 0.14 0.17 0.72 0.79 0.00 0.56 0.12 0.82 0.01 0.16 0.00
 MSQAR(3, 3) 0.49 0.01 0.78 0.05 0.65 0.17 0.21 0.03 0.29 0.09 0.11 0.20

τ = 0.7 τ = 0.8 τ = 0.9
UC CC DQ VQR UC CC DQ VQR UC CC DQ VQR

Panel E: Unconstrained models
 QAR(3) 0.83 0.01 0.17 0.01 0.45 0.05 0.90 0.00 0.03 0.12 0.18 0.01
 MSQAR(3, 3) 0.57 0.25 0.47 0.22 0.55 0.65 0.83 0.15 0.18 0.24 0.83 0.23
Panel F: Constrained models
 QAR(3) 0.54 0.04 0.37 0.01 0.45 0.04 0.27 0.00 0.11 0.18 0.19 0.01
 MSQAR(3, 3) 0.23 0.11 0.14 0.13 0.71 0.47 0.25 0.32 0.43 0.54 0.90 0.10

This table reports the p-values associated with tests of a correct quantile specification at level τ. Results are reported for the unconditional
coverage (UC) test of Kupiec (1995), the conditional coverage test (CC) of Christoffersen (1998), the dynamic quantile (DQ) test of Engle
and Manganelli (2004), and the quantile regression-based test for value-at-risk models (VQR) of Gaglianone et al. (2011). Values < 0.01 are
reported as zero and bold face entries indicate statistical significance at the nominal 5% level.

Table 11 reports the p-values associated with three versions of the Escanciano and Velasco (2010) test for
correct quantile specification at all quantile levels: CvMT is based on the Cramér-von Mises functional, KT is an
extended version of the Kupiec (1995) statistic, and CT is an extended version of the Christoffersen (1998) statis-
tic. These tests are computed according to Eqs. (10), (11), and (13) in Escanciano and Velasco (2010), respectively,
with the m = 9 equi-distributed points τ = 0.1, 0.2, …, 0.9 and b = 150 for their subsampling procedure. The key
takeaway from Table 11 is that the MSQAR(3, 3) subject to the non-crossing restriction is the only model that
passes the correct specification tests, both in and out of sample.

Table 11: Joint quantile specification tests.

In-sample results Out-of-sample results

CvMT KT CT CvMT KT CT

Panel A: Unconstrained models
 QAR(3) 0.041 0.187 0.073 0.000 0.000 0.000
 MSQAR(3, 3) 0.911 0.919 0.106 0.000 0.000 0.001
Panel B: Constrained models
 QAR(3) 0.341 0.000 0.122 0.000 0.000 0.000
 MSQAR(3, 3) 0.740 0.772 0.642 0.382 0.244 0.069

This table reports the p-values associated with the Escanciano and Velasco (2010) test of a correct quantile specification at levels τ = 0.1,
0.2, …, 0.9, jointly. In-sample and out-of-sample results are reported using three different versions of the test: CvMT is based on the
Cramér-von Mises functional, KT is an extended version of the Kupiec (1995) statistic, and CT is an extended version of the Christoffersen
(1998) statistic. These tests are computed according to Eqs. (10), (11), and (13) in Escanciano and Velasco (2010), respectively. Values <
0.001 are reported here as zero and bold face entries indicate statistical significance at the nominal 5% level.

7 Conclusion

We have extended the class of linear quantile autoregression models of Koenker and Xiao (2006) by allowing
for the possibility of Markov-switching regime changes à la Hamilton (1989) in the conditional distribution
of the response variable. We proposed a complete Bayesian methodology for: (i) estimation and inference; (ii)
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specification analysis of the number of regimes and the number of autoregressive lags; and (iii) enforcing the
quantile monotonicity restriction that must be satisfied for any distribution to be well defined.

The Bayesian calculations are easily implemented, since all complete conditional densities used in the Gibbs
sampler have closed-form expressions. As in Gelfand, Smith, and Lee (1992), Gibbs sampling is the key building
block for the proposed stepwise re-estimation procedure that ensures non-crossing quantiles. Monte Carlo
experiments and an illustrative empirical application show how much stronger inference and forecasting can
be when the quantile monotonicity restriction is imposed.

Appendices

A Filtering and MSQAR likelihood

The likelihood function of the MSQAR model is obtained as a byproduct of the basic filter algorithm developed
by Hamilton (1989) to draw probabilistic inferences about the unobserved states 𝑠𝑡−𝑝+1, … , 𝑠𝑡 given observations
on yt. The filter is initialized with 𝑝(s1∶𝑝 | y1∶𝑝; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) and then iterates on the following steps for t = p + 1, …,
T:

Step 1. Given 𝑝(s𝑡−𝑝∶𝑡−1 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏), compute

𝑝(s𝑡−𝑝∶𝑡 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) = 𝑝(𝑠𝑡 | 𝑠𝑡−1; 𝜏) × 𝑝(s𝑡−𝑝∶𝑡−1 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏),

where 𝑝(𝑠𝑡 | 𝑠𝑡−1; 𝜏) refers to the transition probabilities in (8)
Step 2. Compute the filtered probability as

𝑝(s𝑡−𝑝+1∶𝑡 | y1∶𝑡; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) = ∑
𝑠𝑡−𝑝

𝑝(s𝑡−𝑝∶𝑡 | y1∶𝑡; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏),

where

𝑝(s𝑡−𝑝∶𝑡 | y1∶𝑡; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) =
𝑓 (𝑦𝑡, s𝑡−𝑝∶𝑡 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏)

𝑓 (𝑦𝑡 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) .

The likelihood of yt appearing in the denominator of this last expression is given by

𝑓 (𝑦𝑡 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) = ∑
𝑠𝑡

... ∑
𝑠𝑡−𝑝

𝑓 (𝑦𝑡, s𝑡−𝑝∶𝑡 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏),

with

𝑓 (𝑦𝑡, s𝑡−𝑝∶𝑡 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) = 𝑓 (𝑦𝑡 | y1∶𝑡−1, s𝑡−𝑝∶𝑡; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) × 𝑝(s𝑡−𝑝∶𝑡 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏),

and where 𝑓 (𝑦𝑡 | y1∶𝑡−1, s𝑡−𝑝∶𝑡; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) is defined in (10).
As a byproduct of these filtering steps, the sample MSQAR likelihood function could be obtained according

to

𝑓 (y𝑝+1∶𝑇 | y1∶𝑝, ; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) =
𝑇

∏
𝑡=𝑝+1

𝑓 (𝑦𝑡 | y1∶𝑡−1; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏), (17)

and, as Hamilton (1989) explains, rather than using 𝑝(s1∶𝑝 | y1∶𝑝; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏) it is easier to start up the filter with
𝑝(s1∶𝑝 | p(𝜏), 𝜏). To compute this unconditional probability, we start with 𝑝(𝑠1 | 𝜏) in Assumption 4 and then
calculate

𝑝(s1∶𝑡 | p(𝜏), 𝜏) = 𝑝(𝑠𝑡 | 𝑠𝑡−1; 𝜏) × 𝑝(s1∶𝑡−1; 𝜏),

recursively for t = 2, …, p.
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B Gibbs steps

In the following we shall simplify the notation and use, for example, 𝜃𝜃𝜃(𝜏)−𝜇 to denote all the parameters in
𝜃𝜃𝜃(𝜏) excluding 𝜇𝜇𝜇(𝜏).

B.1 Sampling the state variables

In this section we describe two ways to generate draws from the distribution of s conditional upon 𝜃𝜃𝜃(𝜏) and
y. Specifically, the two methods are single- and multi-move sampling which differ in their computational cost
and efficiency. The presentation here closely follows Kim and Nelson (1999), Ch. 9.

B.1.1 Single-move sampling

The single-move sampler proposed by Albert and Chib (1993) generates samples of s by drawing st for each t
one by one from each of the following T conditional distributions:

𝑝(𝑠𝑡 | s−𝑡, 𝜃𝜃𝜃(𝜏), y),

defined for t = 1, …, T, where s−𝑡 = {𝑠𝑡1 ∶ 1 ≤ 𝑡1 ≤ 𝑇, 𝑡1 ≠ 𝑡}.
The key result obtained from Bayes’ theorem for single-move sampling is:

𝑝(𝑠𝑡 | s−𝑡, 𝜃𝜃𝜃(𝜏), y) ∝ 𝑝(𝑠𝑡 | 𝑠𝑡−1; p(𝜏), 𝜏)𝑝(𝑠𝑡+1 | 𝑠𝑡; p(𝜏), 𝜏)
𝑡+𝑝
∏
𝑘=𝑡

𝑓 (𝑦𝑘 | y1∶𝑘−1, s𝑘−𝑝∶𝑘; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏), (18)

for p + 1 ≤ t ≤ T − p + 1. Just as the Hamilton (1989) filter is started up by considering the Markov chain in
isolation, we can generate the first p values of st by first obtaining a draw of s1 according to the unconditional
probabilities 𝑝(𝑠1 | 𝜏) in Assumption 4 and then drawing the next p − 1 values of st according to the probabilities:

𝑝(𝑠𝑡 | s−𝑡, 𝜃𝜃𝜃(𝜏), y) ∝ 𝑝(𝑠𝑡 | 𝑠𝑡−1; p(𝜏), 𝜏)𝑝(𝑠𝑡+1 | 𝑠𝑡; p(𝜏), 𝜏), (19)

for t = 2, …, p. The result in (18) also needs to be slightly modified to deal with the end points. For t = T − p, …,
T − 1, the draws of st are generated with probabilities:

𝑝(𝑠𝑡 | s−𝑡, 𝜃𝜃𝜃(𝜏), y) ∝ 𝑝(𝑠𝑡 | 𝑠𝑡−1; p(𝜏), 𝜏)𝑝(𝑠𝑡+1 | 𝑠𝑡; p(𝜏), 𝜏)
𝑇

∏
𝑘=𝑡

𝑓 (𝑦𝑘 | y1∶𝑘−1, s𝑘−𝑝∶𝑘; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏), (20)

and, when t = T, we use

𝑝(𝑠𝑇 | s−𝑇 , 𝜃𝜃𝜃(𝜏), y) ∝ 𝑝(𝑠𝑇 | 𝑠𝑇−1; p(𝜏), 𝜏)𝑓 (𝑦𝑇 | y1∶𝑇−1, s𝑇−𝑝∶𝑇 ; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏). (21)

With the results in (18)–(21), the normalized probabilities can be calculated as

𝑝(𝑠𝑡 | s−𝑡, 𝜃𝜃𝜃(𝜏), y) = 𝑝(𝑠𝑡 | s−𝑡, 𝜃𝜃𝜃(𝜏), y)
∑𝑠𝑡

𝑝(𝑠𝑡 | s−𝑡, 𝜃𝜃𝜃(𝜏), y) ,

and then drawing st is just like sampling from a multinomial distribution. Note that the state variable st is
sampled iteratively for each t = 1, …, T from these discrete distributions while conditioning on the most recent
draw for all other states, s−t.
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B.1.2 Multi-move sampling

An alternative to the single-move sampler is the multi-move sampling approach of Carter and Kohn (1994),
which draws the entire sequence s from the conditional posterior 𝑝(s | 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y). As Frühwirth-Schnatter
(2006), Ch. 11 describes, the multi-move sampling approach is based on expressing the joint posterior
𝑝(s | 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y) as

𝑝(s | 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y) = 𝑝(𝑠𝑇 | 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y)
𝑇−1
∏
𝑡=1

𝑝(s𝑡 | s𝑡+1∶𝑇 ; y; 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏),

where 𝑝(𝑠𝑇 | 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y) is the filtered probability distribution at time T. So given values for 𝜃𝜃𝜃(𝜏), δ, and the
observations y, a multi-move sample of s is generated according to the following steps:

Step 1. Run the Hamilton (1989) filter described in Appendix A to get 𝑝(s𝑡 | 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y1∶𝑡), for t = 1, …, T.
Step 2. Sample sT according to 𝑝(𝑠𝑇 | 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y), and then, for t = T−1, T−2, …, 1, sample st according to

𝑝(𝑠𝑡 | 𝑠𝑡+1, 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y) = 𝑝(𝑠𝑡+1 | 𝑠𝑡, p(𝜏), 𝜏)𝑝(s𝑡 | 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y1∶𝑡)
∑𝑠𝑡

𝑝(𝑠𝑡+1 | 𝑠𝑡, p(𝜏), 𝜏)𝑝(s𝑡 | 𝜃𝜃𝜃(𝜏), 𝛿, 𝜏, y1∶𝑡)
,

which, as in the case of the single-move sampler, amounts to sampling a multinomial distribution.
A computational disadvantage of this approach is that it requires a run of the filtering algorithm each time

a sample of state variables is generated. On the other hand, multi-move sampling may have better mixing
properties than the sampler that generates the states one at a time in the case of highly correlated Markov
chains (Albert & Chib, 1993; McCulloch & Tsay, 1994; Scott, 2002). In Section 5, we examine this issue in the
context of the proposed MSQAR model.

B.2 Sampling the transition probabilities

Observe that upon conditioning on the sequence of state variables s, the posterior distribution of transition
probabilities pij(τ) becomes independent of y and all the other model parameters. Let p𝑖⋅(𝜏) denote the ith row
of the transition probability matrix P(τ). We specify the prior distribution for p𝑖⋅(𝜏) as a Dirichlet distribu-
tion, D(αi1, …, αiK). Since the Dirichlet distribution is the conjugate prior for the multinomial distribution, the
posterior distributions are also Dirichlet distributions:

𝑝(p𝑖⋅(𝜏) | s) ∼ 𝐷(𝛼𝑖1 + ℕ𝑖1[s], … , 𝛼𝑖𝐾 + ℕ𝑖𝐾[s]),

where ℕ𝑖𝑗[s] counts the number of transitions from i to j occurring in s, as before.

B.3 Sampling𝜇𝜇𝜇(𝜏) and𝜙𝜙𝜙(𝜏)

Once the states have been simulated, the model can be considerably simplified by expressing it as a linear
function of the parameters. Indeed, given values of s, the model in (12) can be transformed into

𝑦∗
𝑡 =

𝐾
∑
𝑖=1

𝜇𝑖(𝜏)𝑠∗
𝑖,𝑡 + 𝛾𝑣𝑡 + 𝜉√𝛿𝑣𝑡𝑧𝑡,

where 𝑦∗
𝑡 = 𝑦𝑡 − ∑𝑝

𝑗=1 𝜙𝑗(𝜏)𝑦𝑡−𝑗 and 𝑠∗
𝑖,𝑡 = 𝕀[𝑠𝑡 = 𝑖] − ∑𝑝

𝑗=1 𝜙𝑗(𝜏)𝕀[𝑠𝑡−𝑗 = 𝑖], for i = 1, …, K. In matrix notation,
this becomes

y∗ = S∗𝜇𝜇𝜇(𝜏) + 𝛾v + 𝜉√𝛿vz,

where y∗ = [𝑦∗
𝑝+1, … , 𝑦∗

𝑇]′ and v = v𝑝+1∶𝑇 = [𝑣𝑝+1, … , 𝑣𝑇]′ are column vectors with T − p rows, and S∗ =
[s∗

1,𝑝+1∶𝑇 , … , s∗
𝐾,𝑝+1∶𝑇] is a (T − p) × K matrix. Following standard practice, we assume that

𝜇𝜇𝜇(𝜏) ∼ 𝑁( �𝜇𝜇𝜇0(𝜏),ΣΣΣ𝜇,0(𝜏)) �𝕀[𝜇1(𝜏) < 𝜇2(𝜏) < … < 𝜇𝐾(𝜏)],
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DE GRUYTER Liu and Luger

where 𝜇𝜇𝜇0(𝜏) and ΣΣΣ𝜇,0(𝜏) comprise the known hyperparameters of this prior distribution. The usual Bayesian
calculation then yields the posterior distribution:

𝜇𝜇𝜇(𝜏) | 𝜃𝜃𝜃(𝜏)−𝜇, s, v, y ∼ 𝑁( �𝜇𝜇𝜇1(𝜏),ΣΣΣ𝜇,1(𝜏)) �𝕀[𝜇1(𝜏) < 𝜇2(𝜏) < ⋯ < 𝜇𝐾(𝜏)],

where ΣΣΣ𝜇,1(𝜏) = ( �ΣΣΣ𝜇,0(𝜏)−1 + S∗′S∗) �−1 and 𝜇𝜇𝜇1(𝜏) = ΣΣΣ𝜇,1(𝜏)( �ΣΣΣ𝜇,0(𝜏)−1𝜇𝜇𝜇0(𝜏) + S∗′y∗) �. Observe that the identi-
fication constraint in Assumption 1 is imposed here using “rejection sampling.”

If we now let 𝑦∗∗
𝑡 = 𝑦𝑡 − 𝜇(𝜏, 𝑠𝑡), then model (12) can be written in matrix form as

y∗∗ = X𝜙𝜙𝜙(𝜏) + 𝛾v + 𝜉√𝛿vz,

where y∗∗ = (𝑦∗∗
𝑝+1, … , 𝑦∗∗

𝑇 )′ and X = [y∗∗
𝑝∶𝑇−1, … , y∗∗

1∶𝑇−𝑝]. As before, we use the natural conjugate normal prior
for linear models and assume that

𝜙𝜙𝜙(𝜏) ∼ 𝑁( �𝜙𝜙𝜙0(𝜏),ΣΣΣ𝜙,0(𝜏)) �𝕊[𝜙𝜙𝜙(𝜏)],

where 𝕊[𝜙𝜙𝜙(𝜏)] is an indicator function which equals one when the roots of ϕ(τ, L) = 0 lie outside the unit circle,
and zero otherwise. The posterior is then found to be

𝜙𝜙𝜙(𝜏) | 𝜃𝜃𝜃(𝜏)−𝜙, s, v, y ∼ 𝑁( �𝜙𝜙𝜙1(𝜏),ΣΣΣ𝜙,1(𝜏)) �𝕊[𝜙𝜙𝜙(𝜏)],

with ΣΣΣ𝜙,1(𝜏) = (�ΣΣΣ𝜙,0(𝜏)−1 + X′X) �−1 and 𝜙𝜙𝜙1(𝜏) = ΣΣΣ𝜙,1(𝜏)( �ΣΣΣ𝜙,0(𝜏)−1𝜙𝜙𝜙0(𝜏) + X′y∗∗) �. Here again we use rejection
sampling so that only the draws from the posterior distribution satisfying the stationarity constraint (Assump-
tion 2) are retained.

B.4 Sampling v and δ

From (12) we see that given s, 𝜃𝜃𝜃(𝜏), and v, the conditional distribution of yt is normal with mean 𝜇(𝜏, 𝑠𝑡) +
∑𝑝

𝑗=1 𝜙𝑗(𝜏)( �𝑦𝑡−𝑗 − 𝜇(𝜏, 𝑠𝑡−𝑗))� + 𝛾𝑣𝑡 and variance ξ2δvt so that

𝑓 (𝑦𝑡 | s, 𝜃𝜃𝜃(𝜏), v, y) ∝ (𝛿𝑣𝑡)1/2 exp {−(𝑦𝑡 − ℓ𝑡 − 𝛾𝑣𝑡)2
2𝜉 2𝛿𝑣𝑡

},

with ℓ𝑡 = 𝜇(𝜏, 𝑠𝑡)+∑𝑝
𝑗=1 𝜙𝑗(𝜏)( �𝑦𝑡−𝑗−𝜇(𝜏, 𝑠𝑡−𝑗))� denoting the conditional location. Upon noticing that 𝑣𝑡 ∼ ℰ(𝛿),

we find as in Kozumi and Kobayashi (2011) that the full conditional distribution of vt given y, s, and 𝜃𝜃𝜃(𝜏) is
proportional to

𝑣−1/2
𝑡 exp {−

1
2

(𝜒2
𝑡 𝑣−1

𝑡 + 𝜓2
𝑡 𝑣𝑡)}, for 𝑡 = 𝑝 + 1, … , 𝑇, (22)

where 𝜒2
𝑡 = (𝑦𝑡 −ℓ𝑡)2/(𝜉 2𝛿) and 𝜓2

𝑡 = 2/𝛿+𝛾2/(𝜉 2𝛿). Expression (22) is recognized as the kernel of a generalized
inverse Gaussian distribution so that

𝑣𝑡 | y, s, 𝜃𝜃𝜃(𝜏) ∼ GIG(1/2, 𝜒𝑡, 𝜓𝑡), for 𝑡 = 𝑝 + 1, … , 𝑇,

where the GIG(ν, a, b) density is given by

𝑓 (𝑥 | 𝜈, 𝑎, 𝑏) = (𝑏/𝑎)𝜈

2𝐾𝜈(𝑎𝑏)𝑥𝜈−1 exp {
1
2

(𝑎2𝑥−1 + 𝑏2𝑥)}, 𝑥 > 0, −∞ < 𝜈 < ∞, 𝑎, 𝑏 ≥ 0,

with Kν(⋅) denoting a modified Bessel function of the third kind with index ν; see Dagpunar (1989) for more
details and an efficient algorithm to simulate from the GIG distribution.

For the scale parameter δ we assume the usual inverse Gamma prior distribution with parameters c0/2 and
d0/2, representing this here as δ ∼ IG(c0/2, d0/2). Since the joint conditional distribution of yt and vt is given as
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the product of the normal distribution (with mean ℓt + γvt and variance ξ2δvt) and the exponential distribution
(with parameter δ), the posterior distribution of δ is propositional to

(1
𝛿 )

𝑐1/2+1+3(𝑇−𝑝)/2
exp

⎧{
⎨{⎩

−1
𝛿

⎛⎜⎜
⎝

𝑑0
2

+
𝑇

∑
𝑡=𝑝+1

𝑣𝑡 +
𝑇

∑
𝑡=𝑝+1

(𝑦𝑡 − ℓ𝑡 − 𝛾𝑣𝑡)2
2𝜉 2𝑣𝑡

⎞⎟⎟
⎠

⎫}
⎬}⎭

.

This expression is recognized as the kernel of the inverse Gamma distribution, meaning that

𝛿 | y, s, v, 𝜃𝜃𝜃(𝜏)−𝛿 ∼ IG(𝑐1/2, 𝑑1/2),

with c1 = c0 + 3(T − p) and 𝑑1 = 𝑑0 + 2∑𝑇
𝑡=𝑝+1 𝑣𝑡 + ∑𝑇

𝑡=𝑝+1(𝑦𝑡 − ℓ𝑡 − 𝛾𝑣𝑡)2/𝜉 2𝑣𝑡.

C Computation of the marginal likelihood

The first term on the right-hand side of (13) is the log of the MSQAR likelihood function in (5) evaluated at
𝜃𝜃𝜃(𝜏)∗. The second term on the right-hand side of (13) is the log of the prior density at 𝜃𝜃𝜃(𝜏)∗. This term can be
written as

log 𝜋( �𝜃𝜃𝜃(𝜏)∗) � = log 𝑓𝑁( �𝜇𝜇𝜇(𝜏)∗;𝜇𝜇𝜇0(𝜏),ΣΣΣ𝜇,0(𝜏)) � + log 𝑓𝑁( �𝜙𝜙𝜙(𝜏)∗;𝜙𝜙𝜙0(𝜏),ΣΣΣ𝜙,0(𝜏)) �

+ log 𝑓𝐼𝐺( �𝛿∗; 𝑐0/2, 𝑑0/2) � +
𝐾

∑
𝑖=1

log 𝑓𝐷( �p𝑖⋅(𝜏)∗; 𝛼𝑖1, … , 𝛼𝑖𝐾) �,

where fN is the multivariate normal density, fIG is the inverted Gamma density, and fD is the Dirichlet density.
The log of the posterior ordinate estimate appearing as the third term on the right-hand side of (13) requires

further computations. We begin with the decomposition

log 𝜋( �𝜃𝜃𝜃(𝜏)∗ | y) � = log 𝜋( �𝜇𝜇𝜇(𝜏)∗ | y) � + log 𝜋( �𝜙𝜙𝜙(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗) �

+ log 𝜋( �𝛿(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗) � +
𝐾

∑
𝑖=1

log 𝜋( �p𝑖⋅(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, 𝛿(𝜏)∗) �, (23)

which is obtained by first writing the joint posterior as a product of conditional posteriors. The ordinate
𝜋( �𝜇𝜇𝜇(𝜏)∗ | y) � can be expressed as

𝜋( �𝜇𝜇𝜇(𝜏)∗ | y) � = ∫ 𝜋( �𝜇𝜇𝜇(𝜏)∗ | y,𝜙𝜙𝜙(𝜏), 𝛿, P(𝜏), s, v) �𝜋( �𝜙𝜙𝜙(𝜏), 𝛿, P(𝜏), s, v | y) � 𝑑𝜙𝜙𝜙(𝜏) 𝑑𝛿 𝑑P(𝜏) 𝑑s 𝑑v,

which can then be estimated from the output of the Gibbs algorithm as

𝜋̂( �𝜇𝜇𝜇(𝜏)∗ | y) � = 𝑁−1
𝑁

∑
𝑛=1

𝜋( �𝜇𝜇𝜇(𝜏)∗ | y,𝜙𝜙𝜙(𝜏)𝑛, 𝛿𝑛, P(𝜏)𝑛, s𝑛, v𝑛) �,

since 𝜙𝜙𝜙(𝜏)𝑛, 𝛿𝑛, P(𝜏)𝑛, s𝑛, v𝑛 is a draw from the conditional distribution of 𝜙𝜙𝜙(𝜏), 𝛿, P(𝜏), s, v given y.
We next turn to the estimation of the ordinate 𝜋( �𝜙𝜙𝜙(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗) �, expressed as

𝜋( �𝜙𝜙𝜙(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗) � = ∫ 𝜋( �𝜙𝜙𝜙(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗, 𝛿, P(𝜏), s, v) �𝜋( �𝛿, P(𝜏), s, v | y,𝜇𝜇𝜇(𝜏)∗) � 𝑑𝛿 𝑑P(𝜏) 𝑑s 𝑑v.

In order to obtain draws from the conditional distribution of δ, P(τ), s, v given y and 𝜇𝜇𝜇(𝜏)∗, we continue Gibbs
sampling for an additional N iterations with the complete conditional densities

𝜋( �s𝑛 | P(𝜏)𝑛−1,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)𝑛−1, v𝑛−1, 𝛿𝑛−1, y) �,
𝜋( �P(𝜏)𝑛 | s𝑛,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)𝑛−1, v𝑛−1, 𝛿𝑛−1, y) �,
𝜋( �𝜙𝜙𝜙(𝜏)𝑛 | s𝑛, P(𝜏)𝑛,𝜇𝜇𝜇(𝜏)∗, v𝑛−1, 𝛿𝑛−1, y) �,
𝜋( �v𝑛 | s𝑛, P(𝜏)𝑛,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)𝑛, 𝛿𝑛−1, y) �,
𝜋( �𝛿𝑛 | s𝑛, P(𝜏)𝑛,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)𝑛, v𝑛, y) �,
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where in each of these densities we condition upon 𝜇𝜇𝜇(𝜏)∗. The Monte Carlo estimate of 𝜋( �𝜙𝜙𝜙(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗) � is
then found as

𝜋̂( �𝜙𝜙𝜙(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗)� = 𝑁−1
𝑁

∑
𝑛=1

𝜋( �𝜙𝜙𝜙(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗, 𝛿𝑛, P(𝜏)𝑛, s𝑛, v𝑛) �,

where {𝛿𝑛, P(𝜏)𝑛, s𝑛, v𝑛}𝑁
𝑛=1 are draws from the auxiliary Gibbs sampler.

This approach can be extended to obtain the estimates of the remaining ordinates in (23). Specifically, the
ordinate 𝜋( �𝛿(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗) � can be estimated as

𝜋̂( �𝛿(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗) � = 𝑁−1
𝑁

∑
𝑖=1

𝜋( �𝛿(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, P(𝜏)𝑛, s𝑛, v𝑛) �,

where {P(𝜏)𝑛, s𝑛, v𝑛}𝑁
𝑛=1 are an additional N draws obtained by continuing the Gibbs sampler with the follow-

ing conditional densities:

𝜋( �s𝑛 | P(𝜏)𝑛−1,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, v𝑛−1, 𝛿𝑛−1, y) �,
𝜋( �P(𝜏)𝑛 | s𝑛,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, v𝑛−1, 𝛿𝑛−1, y) �,
𝜋( �v𝑛 | s𝑛, P(𝜏)𝑛,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, 𝛿𝑛−1, y) �,
𝜋( �𝛿𝑛 | s𝑛, P(𝜏)𝑛,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, v𝑛, y) �,

which take𝜇𝜇𝜇(𝜏)∗ and𝜙𝜙𝜙(𝜏)∗ as fixed. Lastly for 𝜋( �p𝑖⋅(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, 𝛿(𝜏)∗) �, i = 1, …, K, we use the estimates

𝜋̂( �p𝑖⋅(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, 𝛿(𝜏)∗) � = 𝑁−1
𝑁

∑
𝑖=1

𝜋( �p𝑖⋅(𝜏)∗ | y,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, 𝛿(𝜏)∗, P(𝜏)𝑛, s𝑛, v𝑛) �,

where the auxiliary Gibbs draws {P(𝜏)𝑛, s𝑛, v𝑛}𝑁
𝑛=1 are obtained by iteratively sampling from

𝜋( �s𝑛 | P(𝜏)𝑛−1,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, v𝑛−1, 𝛿∗, y) �,
𝜋( �P(𝜏)𝑛 | s𝑛,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, v𝑛−1, 𝛿∗, y) �,
𝜋( �v𝑛 | s𝑛, P(𝜏)𝑛,𝜇𝜇𝜇(𝜏)∗,𝜙𝜙𝜙(𝜏)∗, 𝛿∗, y) �.

Upon substitution of all the estimated posterior ordinates into (23) we finally obtain from (13) the estimate of
(the log of) the marginal likelihood, log 𝜋̂( �y | 𝜏) �.

Notes
1 Farcomeni (2012) presents a similar algorithm for likelihood evaluation in the context of a latent Markov quantile regression model for
longitudinal data.
2 As Chib (1995) explains, however, efficiency considerations dictate that log 𝜋(y | 𝜏) is likely to be more accurately estimated at a high
density point, such as the posterior mean or mode, rather than at a point in the tails of the posterior.
3 Such an approach based on maximizing the posterior probability Pr(𝑠𝑡 | y) of each individual state st, 1 ≤ t ≤ T, is well known to maximize
the number of correctly estimated states. In contrast, the Viterbi (1967) algorithm, which maximizes Pr(𝑠1, … , 𝑠𝑇 | y), is suboptimal for
individual state classification; see Lember and Koloydenko (2014).
4 Observe that the MADE criterion is quite natural in this context since the fundamental quantile estimation problem in (2) is defined via
an absolute deviation loss function.
5 The MLE proceeds here by maximizing (5) subject to the stationary restriction in Assumption 2.
6 Koenker and Xiao (2006) fit a QAR model with p = 1 lag to U.S. short-term interest rates.
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