Epoxy-Montmorillonite Nanocomposites Applied to Powder Coatings
- 
            
            
        D. Piazza
        
Abstract
The wide range of applications associated with nanocomposites is due to their improved properties when compared to conventional composites. In this study, commercial epoxy-based powder coatings were formulated with 2 and 4% (w/w) of an organically modified montmorillonite (OMMT) by incorporation in the melt state (extrusion). These composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and X-ray diffraction (XDR). The thermal behavior and stability of the epoxy nanocomposites were studied by TGA and DSC. The nanoparticle structure within the polymer matrix was analyzed by XRD and TEM. A predominantly exfoliated structure was observed by TEM, which was confirmed by XDR analysis. The study demonstrated that the nanoclay increases the glass transition and crosslinking temperatures and also enhances the thermal stability of the coating.
References
Alexandre, M., Dubois, P., “Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials.” Mater. Sci. Eng., 28, 1–63(2000), DOI: 10.1016/S0927-796X(00)00012-7Suche in Google Scholar
Araújo, E. M., et al., “Influência das Condições de Processamento em Nanocompósitos de PE/Argila Organofílica”, Revista Eletronica De Materiais E Processos, 3. 3, 20–28(2008)Suche in Google Scholar
Bagherzadeh, M. R., Mahdavi, F. “Preparation of Epoxy-Clay Nanocomposite: An Investigation on its Anti-corrosive Behavior in Epoxy Coating”, Prog. Org. Coat., 60, 117–120(2007), DOI: 10.1016/j.porgcoat.2007.07.011Suche in Google Scholar
Barbosa, R., et al., “Preparação de Argilas Organofílicas e Desenvolvimento de Nanocompósitos de Polietileno. Parte 2: Comportamento de Inflamabilidade”, Polímeros: Ciência e Tecnologia, 17, 104–112(2007)10.1590/S0104-14282007000200009Suche in Google Scholar
Barbosa, R., et al., “Morfologia ae Nanocompósitos de Polietileno e Poliamida-6 Contendo Argila Nacional”, Polímeros: Ciência e Tecnologia, 16, 246–251(2006a)10.1590/S0104-14282006000300016Suche in Google Scholar
Barbosa, R., et al., “Efeitos de Sais Quaternários de Amônio e de Argila Organofílica na Estabilidade Térmica e na Inflamabilidade de Nanocompósitos de Polietileno de Alta Densidade”, Revista Eletronica De Materiais E Processo, 1. 1, 50–57(2006b)Suche in Google Scholar
Camino, G., et al., “Thermal and Combustion Behavior of Layered Silicate-Epoxy Nanocompósitos”, Polym. Degrad. Stab., 90, 354–362(2005), DOI: 10.1016/j.polymdegradstab.2005.02.022Suche in Google Scholar
Carrasco, F., Pagès, P., “Thermal Degradation and Stability of Epoxy Nanocomposites: Influence of Montmorillonite Content and Cure Temperature”, Polym. Degrad. Stab., 93, 1000–1007(2008), DOI: 10.1016/j.polymdegradstab.2008.01.018Suche in Google Scholar
Ceccia, S., et al., “Nanocomposite UV-cured Coatings: Organoclay Intercalation by an Epoxy Resin”, Prog. Org. Coat., 63, 110–115(2008), DOI: 10.1016/j.porgcoat.2008.04.012Suche in Google Scholar
Chang, K.-C., et al., “Effect of Clay on the Corrosion Protection Efficiency of PMMA/Na+-MMT Clay Nanocomposite Coatings Evaluated by Electrochemical Measurements”, European Polymer Journal, 44, 13–23(2008), DOI: 10.1016/j.eurpolymj.2007.10.011Suche in Google Scholar
Chen, C., Khobaid, M., Curliss, D., “Epoxy Layered-Silicate Nanocomposites.” Prog. Org. Coat., 47, p. 376–383(2003), DOI: 10.1016/S0300-9440(03)00130-9Suche in Google Scholar
De Camargo, M., “Resinas Poliésteres Carboxifuncionais Para Tinta em Pó: Caracterização e Estudo Cinético da Reação de Cura”, Dissertation-Program de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materias da UFRGS, Porto Alegre (2002)Suche in Google Scholar
De Paiva, L. B., et al., “Organoclays: Properties, Preparation and Applications”, Applied Clay Science, 42, 8–24(2008a), DOI: 10.1016/j.clay.2008.02.006Suche in Google Scholar
De Paiva, L. B., et al., “Argilas Organofílicas: Características, Metodologias de Preparação, Compostos de Intercalação e Técnicas de Caracterização”, Cerâmica, 54, 213–226(2008b)10.1590/S0366-69132008000200012Suche in Google Scholar
De Paiva, L. B., et al., “Propriedades Mecânicas de Nanocompósitos de Polipropileno e Montmorilonita Organofílica”, Polímeros: Ciência e Tecnologia, 16, 136–140(2006)Suche in Google Scholar
Gu, A., Liang, G., “Thermal Degradation Behavior and Kinetic Analysis of Epoxy/Montmorillonite Nanocomposites.” Polym. Degrad. Stab., 80, 383–391(2003), DOI: 10.1016/S0141-3910(03)00026-0Suche in Google Scholar
Hang, T. T. X., et al., “Corrosion Protection of Carbon Steel by an Epoxy Resin Containing Organically Modified Clay”, Surf. Coat. Techno., 201, 7408–7415(2007), DOI: 10.1016/j.surfcoat.2007.02.009Suche in Google Scholar
Hussain, F., et al., “Epoxy-Silicate Nanocomposites: Cure Monitoring and Characterization”, Mater. Sci. Eng. A, 445–446, 467–476(2007), DOI: 10.1016/j.msea.2006.09.071Suche in Google Scholar
José, N. M., Prado, L. A. S. A., “Materiais Híbridos Orgânico-Inorgânicos: Preparação e Algumas Aplicações”, Quím. Nova, 28, 281–288(2005)Suche in Google Scholar
Kowalczyk, K., Spychaj, T., “Epoxy Coatings with Modified Montmorillonites”, Prog. Org. Coat., 63, 425–429(2008), DOI: 10.1016/j.porgcoat.2008.03.001Suche in Google Scholar
Pavlidou, S., Papaspyrides, C. D., “A Review on Polymer-layered Silicate Nanocomposites.” Prog. Polym. Sci., 33, 1119–1198(2008), DOI: 10.1016/j.progpolymsci.2008.07.008Suche in Google Scholar
Pluart, L. L., et al., “Epoxy/Montmorillonite Nanocomposites: Influence of Organophilic Treatment on Reactivity, Morphology and Fracture Properties”, Polymer, 46, 12267–12278(2005), DOI: 10.1016/j.polymer.2005.10.089Suche in Google Scholar
Ray, S. S., Okamoto, M., “Polymer/Layered Silicate Nanocompósitos: A Review from Preparation to Processing.” Prog. Polym. Sci., 28, 1539–1641(2003), DOI: 10.1016/j.progpolymsci.2003.08.002Suche in Google Scholar
Salahuddin, N., et al., “Nanoscale Highly Filled Epoxy Nanocomposite”, European Polymer Journal, 38, 1477–1482(2002), DOI: 10.1016/S0014-3057(02)00015-0Suche in Google Scholar
Sun, L., et al., “Barrier Properties of Model Epoxy Nanocomposites”, J. Membr. Sci., 318, 129–136(2008), DOI: 10.1016/j.memsci.2008.02.041Suche in Google Scholar
Tjong, S. C., “Structural and Mechanical Properties of Polymer Nanocompósitos”, Mater. Sci. Eng., 53, 73–197(2006), DOI: 10.1016/j.mser.2006.06.001Suche in Google Scholar
Truc, T. A., et al., “Incorporation of an Indole-3 Butyric Acid Modified Clay in Epoxy Resin for Corrosion Protection of Carbon Steel”, Surf. Coat. Technol., 202, 4945–4951(2008), DOI: 10.1016/j.surfcoat.2008.04.092Suche in Google Scholar
Yeh, J.-M., Chang, K.-C., “Polymer/Layered Silicate Nanocomposite Anticorrosive Coatings”, J. Ind. Eng. Chem., 14, 275–291(2008), DOI: 10.1016/j.jiec.2008.01.011Suche in Google Scholar
© 2011, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Applicability of the Impact Response Analysis Method for Reinforced Concrete Beams Mixed with Polyvinyl Alcohol Short Fibers
- Epoxy-Montmorillonite Nanocomposites Applied to Powder Coatings
- Direct Imprinting Using Magnetic Nickel Mold and Electromagnetism Assisted Pressure for Replication of Microstructures
- Automated Mold Heating System Using High Frequency Induction with Feedback Temperature Control
- The Prediction of Bowing Distortion of Film after Transverse Stretching with Consideration of Heated Air Flow in a Tenter
- The Influence of Injection Molding and Injection Compression Molding on Ultra-high Molecular Weight Polyethylene Polymer Microfabrication
- A Design-of-Experiment Study on the Microcellular Extrusion of Sub-critical CO2 Saturated PLA Pellets
- Optimization of Injection Molding Process for SGF and PTFE Reinforced PC Composites Using Response Surface Methodology and Simulated Annealing Approach
- Flow Visualisation in Co-rotating Twin Screw Extruders: Positron Emission Particle Tracking and Numerical Particle Trajectories
- The Influence of Melt and Process Parameters on the Quality and Occurrence of Part Defects in Water-assisted Injection Molded Tubes
- Model and Numerical Simulation for the Second Penetration in Water-assisted Injection Molding
- Influence of Extrusion Conditions on the Rheological Behavior of Nuclear Bituminized Waste Products
- Influence of Dicumyl Peroxide Content on Thermal and Mechanical Properties of Polylactide
- Rapid Communications
- Calculation of Average Residence Time in a Ko-kneader
- PPS-News
- PPS News
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Applicability of the Impact Response Analysis Method for Reinforced Concrete Beams Mixed with Polyvinyl Alcohol Short Fibers
- Epoxy-Montmorillonite Nanocomposites Applied to Powder Coatings
- Direct Imprinting Using Magnetic Nickel Mold and Electromagnetism Assisted Pressure for Replication of Microstructures
- Automated Mold Heating System Using High Frequency Induction with Feedback Temperature Control
- The Prediction of Bowing Distortion of Film after Transverse Stretching with Consideration of Heated Air Flow in a Tenter
- The Influence of Injection Molding and Injection Compression Molding on Ultra-high Molecular Weight Polyethylene Polymer Microfabrication
- A Design-of-Experiment Study on the Microcellular Extrusion of Sub-critical CO2 Saturated PLA Pellets
- Optimization of Injection Molding Process for SGF and PTFE Reinforced PC Composites Using Response Surface Methodology and Simulated Annealing Approach
- Flow Visualisation in Co-rotating Twin Screw Extruders: Positron Emission Particle Tracking and Numerical Particle Trajectories
- The Influence of Melt and Process Parameters on the Quality and Occurrence of Part Defects in Water-assisted Injection Molded Tubes
- Model and Numerical Simulation for the Second Penetration in Water-assisted Injection Molding
- Influence of Extrusion Conditions on the Rheological Behavior of Nuclear Bituminized Waste Products
- Influence of Dicumyl Peroxide Content on Thermal and Mechanical Properties of Polylactide
- Rapid Communications
- Calculation of Average Residence Time in a Ko-kneader
- PPS-News
- PPS News