Startseite Investigation on microstructure and thermal properties of in-situ synthesized Cu–ZrO2 nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation on microstructure and thermal properties of in-situ synthesized Cu–ZrO2 nanocomposites

  • Marwa Elmahdy , Gamal Abouelmagd und Asaad A. Mazen
Veröffentlicht/Copyright: 25. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Cu–ZrO2 nanocomposites were prepared by an in-situ reactive synthesis of copper nitrate Cu(NO3)2 and zirconium oxychloride ZrOCl2. Zirconia (ZrO2) was added by 2.5, 5 and 10 wt.% to the Cu matrix to assess its effect on thermal conductivity and thermal expansion behavior. The results showed that ZrO2 nanoparticles (30–50 nm) were homogeneously distributed in the copper matrix. The measured thermal conductivity for the Cu–ZrO2 nanocomposites decreased from 372.8 to 94.4 W m−1 K−1 with increasing ZrO2 content from 0 to 10 wt.%. Cu-10 wt.% ZrO2 nanocomposite yields a low thermal conductivity of 94.4 W · m−1 K−1 along with a low coefficient of thermal expansion, 11.47 × 10−6 K−1.


*Correspondence address, Dr. Marwa Elmahdy, Mechanical Department, Higher Technological Institute, Tenth of Ramadan 228, Egypt, Tel.: +201006244715, Fax: +20015371351, E-mail:

References

[1] A.Fathy, A.Megahed: Int. J. Adv. Manuf. Technol.62 (2012) 953. 10.1007/s00170-011-3861-xSuche in Google Scholar

[2] C.Jang, Q.Jiang, J.Lu, Z.Ye: Mater. Sci. Technol.31 (2015) 1108. 10.1016/j.jmst.2015.07.018Suche in Google Scholar

[3] A.Fathy, O.Elkady, A.Abu-Oqail: J. Composite Mater. (2017) 111. 10.1177/0021998317726148Suche in Google Scholar

[4] A.Wagih, A.Fathy: Adv. Powder Technol.28 (2017) 1954. 10.1016/j.apt.2017.05.005Suche in Google Scholar

[5] A.Fathy, O.Elkady, M.M.Mohammed: Trans. Nonf. Metals Soc. Chin.25 (2015) 46. 10.1016/S1003-6326(15)63577-4Suche in Google Scholar

[6] A.Wagih, A.Fathy: Adv. Powder Technol.27 (2016) 403. 10.1016/j.apt.2016.01.021Suche in Google Scholar

[7] A.Fathy, O.Elkady, A.Abu-Oqail: J. Alloys Compd.719 (2017) 411. 10.1016/j.jallcom.2017.05.209Suche in Google Scholar

[8] J.Ding, N.Zhao, C.Shi, X.J.Du: J. Alloys Compd.425 (2006) 390. 10.1016/j.jallcom.2006.01.058Suche in Google Scholar

[9] M.Khaloobagheri, B.Janipour, N.Askari: Adv. Mater. Res.829 (2014) 610. 10.4028/www.scientific.net/AMR.829.610Suche in Google Scholar

[10] A.Fathy, O.El-Kady: Mater. Des.46 (2013) 355. 10.1016/j.matdes.2012.10.042Suche in Google Scholar

[11] B.D.Cullity: Elements of X-ray diffraction, 2nd ed.California, USA: Addison- Wesley (1978) 102.Suche in Google Scholar

[12] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Suche in Google Scholar

[13] A.Fathy, O.Elkady, A.Abu-Oqail: Mater. Sci. Technol. (2017) in press.10.1080/02670836.2017.1353668Suche in Google Scholar

[14] R.Ritasalo, X.W.Liua, O.Söderberg, A.Keski-Honkola, V.Pitkänen, S.P.Hannula: Procedia Eng.10 (2011) 124. 10.1016/j.proeng.2011.04.023Suche in Google Scholar

[15] C.L.Hsieh, W.H.Tuan: Mater. Sci. Eng. A460/461 (2007) 453.10.1016/j.msea.2007.01.109Suche in Google Scholar

Received: 2017-06-04
Accepted: 2017-08-08
Published Online: 2017-11-25
Published in Print: 2017-12-08

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111576/pdf
Button zum nach oben scrollen