Startseite Densification rate and interfacial adhesion of bilayer cemented tungsten carbide and steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Densification rate and interfacial adhesion of bilayer cemented tungsten carbide and steel

  • Oluwatosin Job Ojo-kupoluyi , Suraya Mohd Tahir , Azmah Hanim Mohamed Ariff , B. T. Hang Tuah Baharudin , Khamirul Amin Matori und Mohd Shamsul Anuar
Veröffentlicht/Copyright: 25. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Manufacturing tailored materials is commonly faced with the challenge of shrinkage mismatch between layers resulting in delamination. The effects of sintering temperature and carbon variation on the densification and interfacial bond strength of bilayer cemented tungsten carbide and steel processed through powder metallurgy are analyzed. It is revealed through field-emission scanning electron microscopy images that inter-layer diffusion induced by liquid-phase sintering plays a major role in the densification and bonding of layers. Through dimensional analysis of sintered bilayer specimens, the strain rate of cemented tungsten carbide is observed to surpass that of steel. An enhanced densification rate of 6.1 % and M6C (eta carbide) reduction with increased carbon level results in strong interfacial bonding in specimens sintered at 1 280 °C. At 1 295 °C, diffusion accelerates and the axial and radial shrinkage increase by 14.05 % and 13.35 %, respectively, in 93.8 wt.% WC – 6 wt.% Fe – 0.2 wt.% C and 93.2 wt.% Fe – 6 wt.% WC – 0.8 wt.% C, thereby increasing the tendency for complete delamination.


*Correspondence address, Dr. Suraya Mohd Tahir, Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, E-mail: , Tel.: +60389464383, Fax: +60386567122

References

[1] G.Largiller, D.Bouvard, C.P.Carry, A.Gabriel, J.Muller, T.Staab: Mech. Mater.53 (2012) 123131. 10.1016/j.mechmat.2012.04.002Suche in Google Scholar

[2] M.B.Uday, M.A.Fauzi, H.Zuhailawati, A.B.Ismail: Mater. Sci. Eng. A528 (2011) 47534760. 10.1016/j.msea.2011.02.091Suche in Google Scholar

[3] Z.Wang, J.Qian, J.Cao, S.Wang, T.A.Wen: J. Alloys Compd.437 (2007) 264268. 10.1016/j.jallcom.2006.07.110Suche in Google Scholar

[4] M.Singh, R.Asthana, T.P.Shpargel: Mater. Sci. Eng. A498 (2008) 1930. 10.1016/j.msea.2007.11.150Suche in Google Scholar

[5] A.Thomazic, C.Pascal, J.M.Chaix: Adv. Eng. Mater.13 (2011) 594598. 10.1002/adem.201000343Suche in Google Scholar

[6] M.Dourandish, A.Simchi: J. Mater. Sci.44 (2009) 12641274. 10.1007/s10853-008-3241-6Suche in Google Scholar

[7] J.G.Yeo, Y.G.Jung, S.C.Choi: J. Eur. Ceram. Soc.18 (1998) 12811285. 10.1016/S0955-2219(98)00054-5Suche in Google Scholar

[8] C.Pascal, A.Thomazic, A.Antoni-Zdziobek, J.M.Chaix: J. Mater. Sci.47 (2012) 18751886. 10.1007/s10853-011-5976-8Suche in Google Scholar

[9] W.Zhang, J.Xie, C.Wang: Mater. Sci. Eng. A382 (2004) 371377. 10.1016/j.msea.2004.05.010Suche in Google Scholar

[10] H.Feng, Q.Meng, Y.Zhou, D.Jia: Mater. Sci. Eng. A395 (2005) 9297. 10.1016/j.msea.2005.02.003Suche in Google Scholar

[11] H.Nie, W.Liang, L.Zheng, X.Ren, C.Chi, H.Fan: J. Mater. Eng. Perform.25 (2006) 46954705. 10.1007/s11665-016-2327-6Suche in Google Scholar

[12] A.Simchi, A.Rota, P.Imgrund: Mater. Sci. Eng. A424 (2006), 282289. 10.1016/j.msea.2006.03.032Suche in Google Scholar

[13] Y.Boonyongmaneerat, C.A.Schuh: Metall. Mater. Trans. A37 (2006) 14351442. 10.1007/s11661-006-0088-9Suche in Google Scholar

[14] P.Z.Cai, D.J.Green, G.L.Messing: J. Am. Ceram. Soc.80 (1997) 19291939. 10.1111/j.1151-2916.1997.tb03075.xSuche in Google Scholar

[15] T.A.Fabijanic, Z.Alar, J.Potschke: Inter. J. Refract. Met. Hard Mater.50 (2015) 126132. 10.1016/j.ijrmhm.2014.12.006Suche in Google Scholar

[16] C.Pascal, A.Thomazic, A.Antoni-Zdziobek, J.-M.Chaix: Int. J. Mater. Res.103 (2012) 296308. 10.3139/146.110647Suche in Google Scholar

[17] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. 10.1016/0364-5916(85)90021-5Suche in Google Scholar

[18] TCFE5: TCS Steels/Fe-alloys Database version 5.0 Thermo-Calc Software AB, Stockholm, Sweden (2005).Suche in Google Scholar

[19] N.D.Sopchak, W.Z.Misiolek: Mater. Manuf. Process.15 (2000) 6579. 10.1080/10426910008912973Suche in Google Scholar

[20] B.Desplanques, F.Valdivieso, S.Saunier: Ceram. Int.40 (2014) 1521515225. 10.1016/j.ceramint.2014.07.003Suche in Google Scholar

[21] C.Pascal, J.M.Chaix, F.Dore, C.H.Allibert: J. Mater. Process. Technol.209 (2009) 12541261. 10.1016/j.jmatprotec.2008.03.058Suche in Google Scholar

[22] R.Gonzalez, J.Echeberria, J.M.Sanchez, F.Castro: J. Mater. Sci.30 (1995) 34353439. 10.1007/BF00349891Suche in Google Scholar

[23] A.Antoni-Zdziobek, J.Y.Shen, M.Durand-Charre: Int. J. of Refract. Met. Hard Mater.26 (2008) 372382. 10.1016/j.ijrmhm.2007.09.001Suche in Google Scholar

[24] O.J.Ojo-kupoluyi, S.M.Tahir, M.A. AzmahHanim, B.T.H.T.Baharudin, K.A.Matori, M.S.Anuar: Int. J. Adv. Manuf. Tech. (2017), 19. 10.1007/s00170-017-0287-0Suche in Google Scholar

[25] T.Cheng, R.Raj: J. Am. Ceram. Soc.72 (1989), 16491655. 10.1111/j.1151-2916.1989.tb06297.xSuche in Google Scholar

[26] E.A.Brandes, C.J.Smithells: Metals reference handbook 1983. Butterworths, London.Suche in Google Scholar

Received: 2017-03-28
Accepted: 2017-07-18
Published Online: 2017-11-25
Published in Print: 2017-12-08

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111563/pdf
Button zum nach oben scrollen