Startseite Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13

  • Sanjeev Katoch , Rakesh Sehgal und Vishal Singh
Veröffentlicht/Copyright: 22. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper investigates the influence of different cryogenic treatments vis-à-vis conventional vacuum heat treatment on the evolution of static mechanical properties and microstructure of hot die steel grade AISI–H13. Deep cryogenic treatment was performed under two different temperatures (−154 °C and −184 °C) and varying soak duration of 6, 21, and 36 h. The resultant mechanical properties were characterized in order to understand the influence of cryogenic treatment vis-à-vis vacuum heat treatment and tempering on the hardness, toughness and the tensile strength. The results showed that samples cryogenically treated at −154°C for a soak duration of 6 h and tempered at 620°C for 2 h had 3.1% higher hardness, samples cryogenically treated at −184 °C for a soak duration of 6 h and tempered at 620 °C for 2 h showed 69 % higher percentage elongation, 36% higher toughness (Charpy V–notch) and showed 12.8% reduction in tensile strength in comparison to conventionally treated samples. X-ray diffraction and field emission scanning electron microscopy techniques were utilized for confirmation of various phases and complex carbides, morphology of microstructure and morphology of fractured surfaces, respectively.


*Correspondence address, Sanjeev Katoch, Center for Materials Science and Engineering, National Institute of Technology, Hamirpur-177005 (H.P.), India, Tel.: +918427262400, E-mail:

References

[1] K.Holmberg, A.Matthews: Coating tribology-properties, techniques and applications in Surface Engineering, 2nd Ed., Tribolo#132;logy and Interface Engineering Series, Elsevier, Amsterdam, (2009) 56.Suche in Google Scholar

[2] M.V.Leite, C.A.Figueroa, S.C.Gallo, A.C.Rovani, R.L.O.Basso, P.R.Mei, I.J.R.Baumvol, A.Sinatora: Wear269 (2010) 466. 10.1016/j.wear.2010.04.037Suche in Google Scholar

[3] X.J.Jawing, Q.Peng, H.Fan, Y.Wang, G.Li, B.Shen: Mater. Charact.60 (2009) 197. 10.1016/j.matchar.2008.08.011Suche in Google Scholar

[4] D.M.Lal, S.Renganarayanan, A.Kalanidhi: Cryogenics41 (2001) 149. 10.1016/S0011-2275(01)00065-0Suche in Google Scholar

[5] R.F.Barron: Progress in Refrigeration Sci. and Technol., Publishing Co., Westport. 1 (1973) 529.Suche in Google Scholar

[6] R.G.Bowes: Heat Treat. Met.1 (1974) 29.Suche in Google Scholar

[7] D.Das, A.K.Dutta, K.K.Ray: Mater. Sci. Eng. A527 (2010) 2182./j.msea.2009.10.071. 10.1016Suche in Google Scholar

[8] M.E.Mehtedi, P.Ricci, L.Drudi, S.E.Mohtadi, M.Cabibbo, S.Spigarelli: Mater. Des.33 (2012) 136. 10.1016/j.matdes.2011.07.030Suche in Google Scholar

[9] M.Koneshlou, K.Meshinchi, F.Khomamizadeh: Cryogenics51 (2011) 55. 10.1016/j.cryogenics.2010.11.001Suche in Google Scholar

[10] S.Katoch, R.Sehgal, V.Singh: Proceeding of International Conference on Advances in Tribology and Engineering Systems, Springer-India (2014) 159166. 10.1007/978-81-322-1656-8_13Suche in Google Scholar

[11] D.Das, A.K.Dutta, K.K.Ray: Wear266 (2009) 297. 10.1016/j.wear.2008.07.001#6;Suche in Google Scholar

[12] K.Amini, S.Nategh, A.Shafyei: Mater. Des.31 (2010) 4666. 10.1016/j.matdes.2010.05.028Suche in Google Scholar

[13] D.N.Collins: Adv. Mater. Process.12 (1998) 23.Suche in Google Scholar

[14] D.N.Collins: Heat Treat. Met.2 (1996) 40.Suche in Google Scholar

[15] F.Diekman, R.Papp: Heat Treating Progress (2009) 3336.Suche in Google Scholar

[16] G.Straffenlini, G.Bizzotto, V.Zanon: Wear269 (2010) 693. 10.1016/j.wear.2010.07.004Suche in Google Scholar

[17] F.J.Silva, S.D.Franco, A.R.Machado, E.O.Ezugwu, A.M.Soozajr: Wear261 (2006) 674. 10.1016/j.wear.2006.01.017Suche in Google Scholar

[18] A.Molinari, M.Pellizzari, S.Gialanella, G.Straffelini, K.H.Stiasny: J. Mater. Process. Technol.118 (2001) 350. 10.1016/S0924-0136(01)00973-6Suche in Google Scholar

[19] S.S.Gill, J.Singh, R.Singh, H.Singh: J. Mater. Eng. Perform.21 (2012) 1320. 10.1007/s11665-011-0032-zSuche in Google Scholar

[20] V.Firouzdor, E.Nejati, F.Khomamizad: J. Mater. Process. Technol.206 (2008) 467. 10.1016/j.jmatprotec.2007.12.072Suche in Google Scholar

[21] Y.Huang, Y.T.Zhu, X.Z.Liao, I.J.Beyerlein, M.A.Bourlce, T.E.Mitchell: Mater. Sci. Eng. A339 (2003) 241. 10.1016/S0921-5093(02)00165-XSuche in Google Scholar

[22] M.Fanju, T.KohsukeA.Ryo, K.Hidea: ISI J Int.34 (1994) 205. 10.2355/isijinternational.34.205Suche in Google Scholar

[23] C.L.Gogte, K.M.Iyer, R.K.Paretka, D.R.Peshwe: Mater. Manuf. Processes24 (2009) 718. 10.1080/10426910902806210Suche in Google Scholar

[24] ASTM E 415-2014: ‘Standard test method for analysis of carbon and low alloy steel by spark atomic emission spectrometry’, ASTM Annual Book of Standards, West Conshohocken, PA, USA.Suche in Google Scholar

[25] A.M.Bayer, T.Vasco, L.R.Walton: ‘Properties and Selection: Iron, Steels and High Performance Alloys’, ASM Handbook Vol. 1, 3rd Ed., ASM Int., Materials Park, OH, USA (1995) 770.Suche in Google Scholar

[26] ASTM E08–08: ‘Standard test method for tension testing of metallic materials’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009).Suche in Google Scholar

[27] ASTM E23-07a.: ‘Standard test method for notched bar impact testing of metallic materials’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009).Suche in Google Scholar

[28] ASTM E3-01 (Reapproved 2007): ‘Standard Guide for preparation of metallographic specimens’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2007).Suche in Google Scholar

[29] ASTM E975-03 (Reapproved 2008): ‘Standard practice for X-Ray determination of retained austenite in steel with near random crystallographic orientation’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009).Suche in Google Scholar

[30] ASTM E384-08a: ‘Standard test method for Micro indentation hardness of materials’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009).Suche in Google Scholar

[31] ASTM E18-08b: ‘Standard test method for Rockwell hardness of metallic materials. ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009).Suche in Google Scholar

[32] F.Farhani, K.S.Niaki, S.E.Vahdat, A.Firozi: Mater. Des.42 (2012) 279. 10.1016/j.matdes.2012.05.059Suche in Google Scholar

[33] M.A.Jaswin, D.M.Lal: Mater. Des.32 (2011) 2429. 10.1016/j.matdes.2010.11.065Suche in Google Scholar

[34] S.Li, Y.Xie, X.Wu: Cryogenics50 (2010) 89. 10.1016/j.cryogenics.2009.12.005Suche in Google Scholar

[35] D.Das, A.K.Dutta, K.K.Ray: Mater. Sci. Eng. A528 (2010) 589. 10.1016/j.msea.2010.09.057Suche in Google Scholar

[36] V.Loskovsek, M.Kalin, J.Vizintin: Vacuum80 (2006) 507. 10.1016/j.vacuum.2005.08.023Suche in Google Scholar

[37] S.ZhirafarA.Rezaeian, M.Pugh: J. Mater. Process. Technol.186 (2007) 298. 10.1016/j.jmatprotec.2006.12.046Suche in Google Scholar

[38] P.F.Stratton: Mater. Sci. Eng. A449–451 (2007) 809. 10.1016/j.msea.2006.01.162Suche in Google Scholar

[39] D.Das, K.K.Ray: Mater. Sci. Eng. A541 (2012) 45. 10.1016/j.msea.2012.01.130Suche in Google Scholar

[40] D.Das, A.K.Dutta, K.K.Ray: Cryogenics49 (2009) 176. 10.1016/j.cryogenics.2009.01.002Suche in Google Scholar

Received: 2016-09-16
Accepted: 2016-12-08
Published Online: 2017-02-22
Published in Print: 2017-03-13

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111467/pdf
Button zum nach oben scrollen