Magnetism of nanostructured materials for advanced magnetic recording
-
Dagmar Goll
Abstract
The continuous increase in magnetic recording density has so far been achieved by scaling the geometrical dimensions. However, it is now obvious that conventional magnetic recording is reaching its scaling limit. To realize ultrahigh recording densities of 1 Tbit/in2 and beyond in the future one of the most straightforward concepts is bit-patterned composite media with a regular arrangement of magnetic nanodots, where each nanodot is composed of a hard magnetic and a soft magnetic part and represents one bit. The hard magnetic component guarantees thermal stability for smallest dot sizes whereas the soft magnetic component reduces the coercivity and thus enables writeability with conventional heads. In this review the requirements for ultrahigh density magnetic recording are presented which seem to be optimally fulfilled by L10-FePt (hard magnetic)/Fe (soft magnetic) nanocomposites.
References
[1] G.Binasch, P.Grünberg, F.Saurenbach, W.Zinn: Phys. Rev. B39 (1989) 4828.Suche in Google Scholar
[2] I.R.McFadyen, E.E.Fullerton, M.J.Carey: MRS Bulletin31 (2006) 379.Suche in Google Scholar
[3] H.J.Richter: J. Phys. D: Appl. Phys32 (1999) R147.10.1088/0022-3727/32/21/201Suche in Google Scholar
[4] H.J.Richter: J. Phys. D: Appl. Phys40 (2007) R149.10.1088/0022-3727/40/9/R01Suche in Google Scholar
[5] A.Moser, K.Takano, D.T.Margulies, M.Albrecht, Y.Sonobe, Y.Ikeda, S.Sun, E.E.Fullerton: J. Phys. D: Appl. Phys.35 (2002) R157.10.1088/0022-3727/35/19/201Suche in Google Scholar
[6] H.J.Richter, S.D.Harkness: MRS Bulletin31 (2006) 384.Suche in Google Scholar
[7] Z.Z.Bandic, D.Litvinov, M.Rooks: MRS Bulletin33 (2008) 831.Suche in Google Scholar
[8] B.D.Terris, T.Thomson: J. Phys. D: Appl. Phys:38 (2005) R199.10.1088/0022-3727/38/12/R01Suche in Google Scholar
[9] D.Litvinov, V.Parekh, C.E.D.Smith, J.O.Rantschler, P.Ruchhoeft, D.Weller, S.Khizroev: IEEE Trans Nanotechnology7 (2008) 463.Suche in Google Scholar
[10] C.A.Ross: Annu. Rev. Mater. Res.31 (2001) 203.10.1146/annurev.matsci.31.1.203Suche in Google Scholar
[11] O.Heinonen, K.Z.Gao: J. Magn. Magn. Mater. (2008).DOI:10.1016/j.jmmm.2008.07.04110.1016/j.jmmm.2008.07.041Suche in Google Scholar
[12] J.P.Wang: Nature Materials4 (2005) 191.10.1038/nmat1344Suche in Google Scholar
[13] M.Alex, A.Tselikov, T.McDaniel, N.Deeman, T.Valet, D.Chen: IEEE Trans. Magn.37 (2001) 1244.Suche in Google Scholar
[14] M.A.Seigler, W.A.Challener, E.Gage, N.Gokemeijer, G.Ju, B.Lu, K.Pelhos, C.Peng, R.E.Rottmayer, X.Yang, H.Zhou, T.Rausch: IEEE Trans. Magn.44 (2008) 119.Suche in Google Scholar
[15] J.G.Zhu, X.Zhu, Y.Tang: IEEE Trans. Magn.44 (2008) 125.Suche in Google Scholar
[16] R.H.Victora, X.Shen: IEEE Trans. Magn.41 (2005) 537.Suche in Google Scholar
[17] A.Y.Dobin, H.J.Richter: Appl. Phys. Letters89 (2006) 062512.Suche in Google Scholar
[18] M.Ghidini, G.Asti, R.Pellicelli, C.Pernechele, M.Solzi: J. Magn. Magn. Mater.316 (2007) 159.Suche in Google Scholar
[19] D.Suess: J. Magn. Magn. Mater.308 (2007) 183.10.1016/j.jmmm.2006.05.021Suche in Google Scholar
[20] D.Goll, S.Macke, H.N.Bertram: Appl. Phys. Letters90 (2007) 172506.Suche in Google Scholar
[21] B.Livshitz, A.Inomata, H.N.Bertram, V.Lomakin: Appl. Phys. Letters91 (2007) 182502.Suche in Google Scholar
[22] J.P.Wang, W.Shen, S.Y.Hong: IEEE Trans. Magn.43 (2007) 682.Suche in Google Scholar
[23] H.N.Bertram, B.Lengsfield: IEEE Trans. Magn.43 (2007) 2145.Suche in Google Scholar
[24] D.Goll, A.Breitling, S.Macke: IEEE Trans. Magn.44 (2008) 3472.Suche in Google Scholar
[25] D.Goll, H.Kronmüller, H.: Physica B403 (2008) 1854.Suche in Google Scholar
[26] K.Misuzuka, T.Shimatsu, H.Muraoka, H.Aoi, N.Kikuchi, O.Kitakami: J. Appl. Phys.103 (2008) 07C504.Suche in Google Scholar
[27] D.Goll, A.Breitling: Appl. Phys. Letters94 (2009) 052502.Suche in Google Scholar
[28] D.Suess: Appl. Phys. Letters89 (2006) 113105.10.1063/1.2347894Suche in Google Scholar
[29] A.Goncharov, T.Schrefl, G.Hrkac, J.Dean, S.Bance, D.Suess, O.Ertl, F.Dorfbauer, J.Fidler: Appl. Phys. Letters91 (2007) 222502.Suche in Google Scholar
[30] Y.Choi, J.S.Jiang, Y.Ding, R.A.Rosenberg, J.E.Pearson, S.D.Bader, A.Zambano, M.Murakami, I.Takeuchi, Z.L.Wang, J.P.Liu: Phys. Rev. B75 (2007) 104432.Suche in Google Scholar
[31] D.Goll, A.Breitling, L.Gu, P.A.van Aken, W.Sigle: J. Appl. Phys.104 (2008) 083903.Suche in Google Scholar
[32] R.Skomski, T.A.George, D.J.Sellmyer: J. Appl. Phys.103 (2008) 07F531.Suche in Google Scholar
[33] V.Lomakin, B.Livshitz, S.Li, A.Inomata, H.N.Bertram: Appl. Phys. Letters92 (2008) 022502.Suche in Google Scholar
[34] D.Goll, S.Macke: Appl. Phys. Letters93 (2008) 152512.Suche in Google Scholar
[35] V.Lomakin, S.Li, B.Livshitz, A.Inomata, H.N.Bertram: IEEE Trans. Magn.44 (2008) 3454.Suche in Google Scholar
[36] J.C.Lodder: J. Magn. Magn. Mater.272–276 (2004) 1692.10.1016/j.jmmm.2003.12.259Suche in Google Scholar
[37] S.H.Sun, C.B.Murray, D.Weller, L.Folks, A.Moser: Science287 (2000) 1989.Suche in Google Scholar
[38] A.A.Zhukov, A.V.Goncharov, P.A.J.de Groot, P.N.Bartlett, M.A.Ghanem: J. Appl. Phys.93 (2003) 7322.Suche in Google Scholar
[39] M.Albrecht, G.Hu, I.L.Guhr, T.C.Ulbrich, J.Boneberg, P.Leiderer, G.Schatz: Nature Materials4 (2005) 203.Suche in Google Scholar
[40] P.Aranda, J.M.Garcia: J. Magn. Magn. Mater.249 (2002) 214.Suche in Google Scholar
[41] S.V.Sreenivasan: MRS Bulletin33 (2008) 854.10.1557/mrs2008.181Suche in Google Scholar
[42] C.A.Ross, J.Y.Cheng: MRS Bulletin33 (2008) 838.Suche in Google Scholar
[43] S.Khizroev, R.Ikkawi, N.Amos, R.Chomko, R.Renugopalakrishnan, R.Haddon, D.Litvinov: MRS Bulletin33 (2008) 864.Suche in Google Scholar
[44] Landolt-Börnstein, Numeric Data and Functional Relationships in Science and Technology, New Series, Group IV, Vol. 5, edited by O.Madelung (Springer, Berlin, 1995).Suche in Google Scholar
[45] A.Cebollada, D.Weller, J.Sticht, G.R.Harp, R.F.C.Farrow, R.F.Marks, R.Savoy, J.C.Scott: Phys. Rev. B50 (1994) 3419.Suche in Google Scholar
[46] T.Shima, K.Takanashi, Y.K.Takahashi, K.Hono: Appl. Phys. Letters81 (2002) 1050.Suche in Google Scholar
[47] M.Weisheit, L.Schultz, S.Fähler: J. Appl. Phys.95 (2004) 7489.Suche in Google Scholar
[48] F.Casoli, F.Albertini, S.Fabbrici, C.Bocchi, L.Nasi, R.Cirpian, L.Pareti: IEEE Trans. Magn.41 (2005) 3877.Suche in Google Scholar
[49] N.H.Hai, N.M.Dempsey, M.Veron, M.Verdier, D.Givord: J. Magn. Magn. Mater.257 (2003) L139.10.1016/S0304-8853(02)01284-2Suche in Google Scholar
[50] A.Breitling, D.Goll: J. Magn. Magn. Mater.320 (2008) 1449.Suche in Google Scholar
[51] A.Ludwig, N.Zotov, A.Savan, S.Groudeva-Zozova: Appl. Surf. Sci.252 (2006) 2518.Suche in Google Scholar
[52] D.Goll, A.Breitling, N.H.Goo, W.Sigle, M.Hirscher, G.Schütz: Journal of Iron and Steel Research13, Suppl. 1 (2006) 97.10.1016/S1006-706X(08)60166-1Suche in Google Scholar
[53] T.Kaiser, W.Sigle, D.Goll, N.H.Goo, V.Srot, P.A.van Aken, E.Detemple: J. Appl. Phys.103 (2008) 063913.Suche in Google Scholar
[54] A.Breitling, D.Goll: submitted.Suche in Google Scholar
[55] D.Goll, M.Seeger, H.Kronmüller: J. Magn. Magn. Mater.185 (1998) 49.Suche in Google Scholar
[56] D.Goll, H.Kronmüller: Naturwissenschaften87 (2000) 423.Suche in Google Scholar
[57] H.Kronmüller, D.Goll: Scripta Mater.47 (2002) 551.Suche in Google Scholar
[58] H.Kronmüller, D.Goll: Physica B403 (2008) 237.Suche in Google Scholar
[59] D.Goll, S.Macke, H.Kronmüller: Physica B403 (2008) 338.10.1021/ja965922+Suche in Google Scholar
[60] E.Kondorski: Phys. Z. Sowjetunion11 (1937) 597.Suche in Google Scholar
[61] D.Suess, J.Lee, J.Fidler, T.Schrefl: arXiv:0805.1674v1 [cond-mat.mtrl-sci].Suche in Google Scholar
[62] D.Suess, S.Eder, J.Lee, R.Dittrich, J.Fidler, J.W.Harrell, T.Schrefl, G.Harkac, M.Schabes, N.Supper, A.Berger: Phys. Rev. B75 (2007) 174430.Suche in Google Scholar
[63] G.Henkelman, H.Jónsson: J. Chem. Phys.113 (2000) 9978.Suche in Google Scholar
© 2009, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Feature
- Nd–Fe–B permanent magnets a quarter century later: implications for patentability
- Micromagnetism of advanced hard magnetic materials
- Magnetism of nanostructured materials for advanced magnetic recording
- Basic
- A Study of the Al–Mg–B Ternary Phase Diagram
- Effects of Lanthanum on Magnetic Behavior and Hardness of Electroless Ni–Fe–P Deposits
- Interfacial Reactions between Lead-Free Solders and the Multilayer Au/Ni/SUS304 Substrate
- Melting Behavior of Sn–Bi Alloy Powder Compacts Observed Using Optical Dilatometry
- High-Strength Mg-Based Bulk Metallic Glass Composites with Remarkable Plasticity
- Determination of Liquidus Temperature in Sn–Ti–Zr Alloys by Viscosity, Electrical Conductivity and XRD Measurements
- The coupled FEM analysis of super-high angular speed polishing of diamond films
- Applied
- Comparison of Depth-Sensing Indentation at Ultramicroscopic Contacts by Single- and Multiple-Partial-Unload Cycles
- Sintering Behavior of ZnO: Mn Ceramics Fabricated from Sol-Gel Derived Nanocrystalline powders
- Suitability of Maraging Steel Weld Cladding for Repair of Die-Casting Tooling
- Enhanced properties of functionally graded Cu–Cr powder compacts
- Influence of Cr on the microstructure and mechanical properties of Ti–Si Eutectic Alloys
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Feature
- Nd–Fe–B permanent magnets a quarter century later: implications for patentability
- Micromagnetism of advanced hard magnetic materials
- Magnetism of nanostructured materials for advanced magnetic recording
- Basic
- A Study of the Al–Mg–B Ternary Phase Diagram
- Effects of Lanthanum on Magnetic Behavior and Hardness of Electroless Ni–Fe–P Deposits
- Interfacial Reactions between Lead-Free Solders and the Multilayer Au/Ni/SUS304 Substrate
- Melting Behavior of Sn–Bi Alloy Powder Compacts Observed Using Optical Dilatometry
- High-Strength Mg-Based Bulk Metallic Glass Composites with Remarkable Plasticity
- Determination of Liquidus Temperature in Sn–Ti–Zr Alloys by Viscosity, Electrical Conductivity and XRD Measurements
- The coupled FEM analysis of super-high angular speed polishing of diamond films
- Applied
- Comparison of Depth-Sensing Indentation at Ultramicroscopic Contacts by Single- and Multiple-Partial-Unload Cycles
- Sintering Behavior of ZnO: Mn Ceramics Fabricated from Sol-Gel Derived Nanocrystalline powders
- Suitability of Maraging Steel Weld Cladding for Repair of Die-Casting Tooling
- Enhanced properties of functionally graded Cu–Cr powder compacts
- Influence of Cr on the microstructure and mechanical properties of Ti–Si Eutectic Alloys
- Notifications
- DGM News