High temperature creep of La-monazite
-
M. Berbon
Abstract
Compressive creep of La-monazite is investigated in the temperature range 1100 °C to 1500 °C. The study includes both high-purity single-phase material and material with excess phosphorus located in amorphous grain boundary phases. The results indicate that the presence of small amounts of excess P in polycrystalline LaPO4 has a large effect on microstructural stability and creep at high temperature. Materials with La/P ratio close to unity (within ∼500 ppm) show little grain growth at temperatures up to 1400 °C and deform by creep at rates similar to those of alumina and zirconia, with stress exponent ∼1. Materials containing excess P (as little as ∼1 %) show more rapid grain growth, higher creep rates, and cavitation during creep. The results are compared with creep rates of other refractory oxides and oxide fibers. Implications for the behavior of oxide composites containing La-monazite are considered.
References
[1] J.B.Davis, D.B.Marshall, P.E.D.Morgan, R.M.Housley: J. Am. Ceram. Soc.81 (1998) 2169–2175.10.1111/j.1151-2916.1998.tb02602.xSuche in Google Scholar
[2] W.Min, K.Mityahara, K.Yoki, T.Yamaguchi, K.Daimon, Y.Hikichi, T.Matsubara, T.Ota: Mat. Res. Bull.36 (2001) 939–945.10.1016/S0025-5408(01)00555-4Suche in Google Scholar
[3] Z.Zhou, Z.Yang, Q.Yuan, LiXh: Journal of Rare Earths20 (2002) 197–203.Suche in Google Scholar
[4] R.Wang, W.Pan, J.Chen, M.Fang, J.Meng: Mater. Lett.57 (2002) 822–827.10.1016/S0167-577X(02)00880-7Suche in Google Scholar
[5] P.E.D.Morgan, D.B.Marshall: J. Am. Ceram. Soc.78 (1995) 1553–1563.10.1111/j.1151-2916.1995.tb08851.xSuche in Google Scholar
[6] P.E.D.Morgan, D.B.Marshall, R.M.Housley: J. Mater. Sci. Eng. A195 (1995) 215–222.10.1016/0921-5093(94)06521-7Suche in Google Scholar
[7] D.B.Marshall, P.E.D.Morgan, R.M.Housley, J.T.Cheung: J. Am. Ceram. Soc.81 (1998) 951–956.10.1111/j.1151-2916.1998.tb02432.xSuche in Google Scholar
[8] D.B.Marshall, J.B.Davis, P.E.D.Morgan, J.R.Porter: Key Eng. Mater.127–131 (1997) 27–36.Suche in Google Scholar
[9] J.B.Davis, D.B.Marshall, P.E.D.Morgan: J. Eur. Ceram. Soc.19 (1999) 2421–2426.10.1016/S0955-2219(99)00112-0Suche in Google Scholar
[10] J.B.Davis, D.B.Marshall, P.E.D.Morgan: J. Eur. Ceram. Soc.20 (2000) 583–587.10.1016/S0955-2219(99)00256-3Suche in Google Scholar
[11] K.A.Keller, T.-I.Mah, E.E.Boakye, T.A.Parthasarathy: Ceram. Eng. Sci. Proc.21 (2000) 525–534.10.1002/9780470294628.ch62Suche in Google Scholar
[12] T.A.Parthasarathy, E.Boakeye, M.K.Cinibulk, M.D.Perry: J. Amer. Ceram. Soc.82 (1999) 3575–3583.10.1111/j.1151-2916.1999.tb02281.xSuche in Google Scholar
[13] S.M.Johnson, Y.Blum, C.Kanazawa, H.-J.Wu, J.R.Porter, P.E.D.Morgan, D.B.Marshall, D.Wilson: Key Eng. Mater.127–131 (1997) 231–238.Suche in Google Scholar
[14] S.M.Johnson, Y.Blum, C.H.Kanazawa: Key. Eng. Mater.164–165 (1999) 85–90.Suche in Google Scholar
[15] K.A.Keller, T.Mah, T.A.Parthasarathy, E.E.Boakye, M.Cinibulk: Ceram. Eng. Sci. Proc.22 (2001) 667–675.10.1002/9780470294680.ch77Suche in Google Scholar
[16] Y.Hikichi, T.Nomura: J. Am. Cer. Soc.70 (1987) C252–C 253.10.1111/j.1151-2916.1987.tb04890.xSuche in Google Scholar
[17] J.B.Davis, R.S.Hay, D.B.Marshall, P.E.D.Morgan, A.Sayir: J. Am. Ceram. Soc.86 (2003) 305–316.10.1111/j.1151-2916.2003.tb00016.xSuche in Google Scholar
[18] D.B.Marshall, P.E.D.Morgan, R.M.Housley: J. Am. Ceram. Soc.80 (1997) 1677–1683.10.1111/j.1151-2916.1997.tb03038.xSuche in Google Scholar
[19] D.-H.Kuo, W.M.Kriven: J. Am. Ceram. Soc.78 (1995) 3121–3124.10.1111/j.1151-2916.1995.tb09094.xSuche in Google Scholar
[20] M.G.Cain, R.L.Cain, A.Tye, P.Rian, M.H.Lewis, J.Gent: Key Eng. Mat.127–131 (1997) 37–49.Suche in Google Scholar
[21] K.A.Keller, T.-I.Mah, T.A.Parthasarathy, E.E.Boakye, P.Mogilevsky, M.K.Cinibulk: J. Am. Ceram. Soc. 2002, 86 (2003) 325–332.10.1111/j.1151-2916.2003.tb00018.xSuche in Google Scholar
[22] R.S.Hay, D.B.Marshall: Acta Mater.51 (2003) 5235–5254.10.1016/S1359-6454(03)00305-7Suche in Google Scholar
[23] R.S.Hay: Ceram. Eng. Sci. Proc.21 (2000) 203–218.10.1002/9780470294635.ch26Suche in Google Scholar
[24] R.S.Hay: Acta Mater.51 (2003) 5255–5262.10.1016/S1359-6454(03)00304-5Suche in Google Scholar
[25] R.S.Hay: J. Am. Ceram. Soc.87 (2004) 1149–1152.10.1111/j.1551-2916.2004.01149.xSuche in Google Scholar
[26] R.S.Hay: Philos. Mag.85 (2005) 373–386.10.1080/14786430412331315761Suche in Google Scholar
[27] F.G.Karioris, K.A.Gowda, L.Cartz: Radiation Effects Letters58 (1981) 1–3.10.1080/01422448108226520Suche in Google Scholar
[28] T.C.Ehlert, K.A.Gowda, F.G.Karioris, L.Cartz: Radiation Effects70 (1983) 173–181.10.1080/00337578308219214Suche in Google Scholar
[29] A.Meldrum, L.A.Boatner, R.C.Ewing: Min. Mag.64 (2000) 185–194.10.1180/002646100549283Suche in Google Scholar
[30] L.A.Boatner, B.C.Sales, in: W.Lutze, R.C.Ewing (Eds.), Radioactive Waste Forms for the Future. North-Holland, New York Ch. 8 (1988).Suche in Google Scholar
[31] A.Meldrum, L.A.Boatner, R.C.Ewing: J. Mater. Res.12 (1997) 1816–1827.10.1557/JMR.1997.0250Suche in Google Scholar
[32] P.E.D.Morgan, D.B.Marshall, J.B.Davis, R.M.Housley, in: A.Pechenik, R.K.Kalia, P.Vashishta (Eds.), Computer Aided Design of High-Temperature Materials, Oxford University Press, New York: (1999) 229–243.Suche in Google Scholar
[33] J.B.Davis, D.B.Marshall, K.S.Oka, R.M.Housley, P.E.D.Morgan: Composites Part A30 (1999) 483–488.10.1016/S1359-835X(98)00138-9Suche in Google Scholar
[34] J.B.Davis, D.B.Marshall, P.E.D.Morgan, K.S.Oka, A.O.Barney, P.A.Hogenson: American Institute of Aeronautics and Astronautics, AIAA-2000-5087.Suche in Google Scholar
[35] E.Boakye, R.S.Hay, M.D.Petry: J. Amer. Cer. Soc.82 (1999) 2321–2331.10.1111/j.1151-2916.1999.tb02086.xSuche in Google Scholar
[36] R.S.Hay, E.Boakye, M.D.Petry: J. Eur. Ceram. Soc.20 (2000) 589–597.10.1016/S0955-2219(99)00257-5Suche in Google Scholar
[37] E.Boakye, M.D.Petry, R.S.Hay, L.M.Douglas: Ceram. Eng. Sci. Proc.21 (2000) 229–236.10.1002/9780470294635.ch28Suche in Google Scholar
[38] H.D.Park, E.R.Kreidler: J. Am. Ceram. Soc.67 (1984) 23–26.10.1111/j.1151-2916.1984.tb19140.xSuche in Google Scholar
[39] J.Kropiwnicka, T.Znamierowska: Pol. J. Chem.62 (1988) 587–594.Suche in Google Scholar
[40] J.B.Davis: Unpublished work.Suche in Google Scholar
[41] J.Seidensticker, M.J.Mayo: Scripta Mater.38 (1998) 1091.Suche in Google Scholar
[42] R.S.Hay, E.Boakeye, M.D.Petry, Y.Berta, K.Von Lehmden, J.Welch: Ceram. Eng. Sci. Proc.20 (1999) 165–172.10.1002/9780470294567.ch20Suche in Google Scholar
[43] J.Cho, C.Wang, H.M.Chan, M.P.Harmer, J.M.Rickman: J. Mater. Res.16 (2001) 425–429.10.1557/JMR.2001.0064Suche in Google Scholar
[44] T.A.Parthasarathy, T.Mah, L.E.Matson: J. Am. Ceram. Soc.76 (1993) 29–32.10.1111/j.1151-2916.1993.tb03685.xSuche in Google Scholar
[45] M.Jimenez-Melendo, A.Dominguez-Rodriguez, A.Bravo-Leon: J. Amer. Ceram. Soc.81 (1998) 2761–2776.10.1111/j.1151-2916.1998.tb02695.xSuche in Google Scholar
[46] D.M.Wilson, Viser: Ceram. Eng. Sci. Proc.21 (2000) 363–373.10.1002/9780470294635.ch44Suche in Google Scholar
[47] D.M.Wilson, S.L.Lieder, D.C.Lueneburg: Ceram. Eng. Sci. Proc.16 (1995) 1005.Suche in Google Scholar
[48] D.M.Wilson, D.C.Lueneburg, S.L.Lieder: Ceram. Eng. Sci. Proc.14 (1993) 609–621.10.1002/9780470314180.ch87Suche in Google Scholar
[49] M.B.Ruggles-Wrenn, S.S.Musil, S.Mall, K.A.Keller: Comp. Sci. Tech.66 (2006) 2089–2099.10.1016/j.compscitech.2005.12.026Suche in Google Scholar
[50] P.R.Jackson, M.B.Ruggles-Wrenn, S.S.Baekb, K.A.Keller: Mater. Sci. Eng. A454–455 (2007) 590–601.10.1016/j.msea.2006.11.131Suche in Google Scholar
© 2007, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Tony Evans 65 years
- Basic
- Do plastic zones form at crack tips in silicate glasses?
- Phase stability of thermal barrier oxides: A comparative study of Y and Yb additions
- Internal stresses and phase stability in multiphase environmental barrier coatings
- Mechanisms of elastodynamic erosion of electron-beam thermal barrier coatings
- Directed assembly of fluidic networks by buckle delamination of films on patterned substrates
- In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys
- Adhesion of the γ-Ni(Al)/α-Al2O3 interface: a first-principles assessment
- Crystal chemistry of interfaces formed between two different non-metallic, inorganic structures
- Applied
- Materials for violin bows
- Wetting of metals and glasses on Mo
- High temperature creep of La-monazite
- Sandwich panels for blast protection in water: simulations
- Thermal-elastic response of marble polycrystals: Influence of grain orientation configuration
- The compressive response of carbon fiber composite pyramidal truss sandwich cores
- Reactions in the sintering of MgAl2O4 spinel doped with LiF
- Crack-tip strain fields in collagen biomaterials for skin tissue engineering
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Tony Evans 65 years
- Basic
- Do plastic zones form at crack tips in silicate glasses?
- Phase stability of thermal barrier oxides: A comparative study of Y and Yb additions
- Internal stresses and phase stability in multiphase environmental barrier coatings
- Mechanisms of elastodynamic erosion of electron-beam thermal barrier coatings
- Directed assembly of fluidic networks by buckle delamination of films on patterned substrates
- In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys
- Adhesion of the γ-Ni(Al)/α-Al2O3 interface: a first-principles assessment
- Crystal chemistry of interfaces formed between two different non-metallic, inorganic structures
- Applied
- Materials for violin bows
- Wetting of metals and glasses on Mo
- High temperature creep of La-monazite
- Sandwich panels for blast protection in water: simulations
- Thermal-elastic response of marble polycrystals: Influence of grain orientation configuration
- The compressive response of carbon fiber composite pyramidal truss sandwich cores
- Reactions in the sintering of MgAl2O4 spinel doped with LiF
- Crack-tip strain fields in collagen biomaterials for skin tissue engineering
- DGM News
- Personal