Startseite Technik Fission source sampling in coupled Monte Carlo simulations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fission source sampling in coupled Monte Carlo simulations

  • B. Olsen EMAIL logo und J. Dufek
Veröffentlicht/Copyright: 28. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study fission source sampling methods suitable for the iterative way of solving coupled Monte Carlo neutronics problems. Specifically, we address the question as to how the initial Monte Carlo fission source should be optimally sampled at the beginning of each iteration step. We compare numerically two approaches of sampling the initial fission source; the tested techniques are derived from well-known methods for iterating the neutron flux in coupled simulations. The first technique samples the initial fission source using the source from the previous iteration step, while the other technique uses a combination of all previous steps for this purpose. We observe that the previous-step approach performs the best.

Abstract

Wir untersuchen das Sampeln der Neutronenspaltquelle und entsprechende Sampling-Methoden, welche für das iterative Lösen gekoppelter Monte-Carlo-Neutronikprobleme geeignet sind. Insbesondere widmen wir uns der Frage, wie die anfängliche Monte-Carlo-Spaltquelle zu Beginn eines jeden neuen Iterationsschrittes optimal gesampelt werden sollte. Numerisch vergleichen wir zwei Vorgehensweisen, die Anfangsspaltquelle zu sampeln; die getesteten Verfahren sind abgeleitet von zwei allgemein bekannten Methoden zur Iteration des Neutronenflusses in gekoppelten Simulationen. Das erste Verfahren sampelt die initiale Spaltquelle auf der Grundlage des vorigen Iterationsschrittes, wohingegen in dem zweiten Verfahren eine Kombination aus allen vorausgegangenen Iterationsschritten gebildet wird. Wir beobachten, dass der Ansatz, die Spaltquelle aus dem vorherigen Iterationsschritt abzuleiten, am besten funktioniert.

Acknowledgements

The simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC Center for High Performance Computing at KTH, Royal Institute of Technology.

References

1 Dufek, J.; Gudowski, W.: Stochastic Approximation for Monte Carlo Calculation of Steady-State Conditions in Thermal Reactors. Nuclear Science and Engineering 52 (2006) 274–283, DOI:10.13182/NSE06-210.13182/NSE06-2Suche in Google Scholar

2 Isotalo, A. E.; Leppänen, J.; Dufek, J.: Preventing xenon oscillations in Monte Carlo burnup calculations by enforcing equilibrium xenon distribution. Annals of Nuclear Energy 60 (2013) 75–85, DOI:10.1016/j.anucene.2013.04.03110.1016/j.anucene.2013.04.031Suche in Google Scholar

3 Dufek, J.; Anglart, H.: Derivation of a stable coupling scheme for Monte Carlo burnup calculations with the thermal–hydraulic feedback. Annals of Nuclear Energy 62 (2013) 260–263, DOI:10.1016/j.anucene.2013.06.02510.1016/j.anucene.2013.06.025Suche in Google Scholar

4 Dufek, J.; Valtavirta, V.: Time step length versus efficiency of Monte Carlo burnup calculations. Annals of Nuclear Energy 72 (2014) 409–412, DOI:10.1016/j.anucene.2014.06.01910.1016/j.anucene.2014.06.019Suche in Google Scholar

5 Moore, R. L.; Schnitzler, B. G.; Wemple, C. A.: MOCUP: MCNP-ORIGEN2 coupled utility program. USA: Idaho National Engineering Laboratory; 1995, Report no. INEL-95/052310.2172/130667Suche in Google Scholar

6 Leppänen, J.: Serpent – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code. Finland: VTT Technical Research Centre of Finland; 2012Suche in Google Scholar

7 Fensin, M. L.; Hendricks, J. S.; Anghaie S.: The enhancements and testing for the MCNPX 2.6.0 depletion capability. Nuclear Technology 170 (1995) 68–7910.13182/NT10-2Suche in Google Scholar

8 Griesheimer, D. P.; Gill, D. F.; Nease, B. R.; Sutton, T. M.; Stedry, M. H.; Dobreff, P. S.; Carpenter, D. C.; Trumbull, T. H.; Caro, E.; Joo, H.; Millman, D. L.: MC21 v.6.0 – A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities. Annals of Nuclear Energy 82 (2015) 29–40, DOI:10.1016/j.anucene.2014.08.02010.1016/j.anucene.2014.08.020Suche in Google Scholar

9 Sjenitzer, L. B.; Hoogenboom, E. J.: A Monte Carlo method for calculation on the dynamic behaviour of nuclear reactors. Progress in Nuclear Science and Technology 2 (2011) 716–721, DOI:10.15669/pnst.2.71610.15669/pnst.2.716Suche in Google Scholar

10 Dufek, J.; Hoogenboom, J. E.: Description of a stable scheme for steady-state coupled Monte Carlo-thermal-hydraulic calculations. Annals of Nuclear Energy 68 (2014) 1–3, DOI:10.1016/j.anucene.2013.12.01710.1016/j.anucene.2013.12.017Suche in Google Scholar

11 DOE Fundamentals Handbook – Nuclear Physics and Reactor Theory, Volume 2 of 2. Washington, D.C.: U.S. Department of Energy; 1993, p. 34 –42Suche in Google Scholar

12 Etherington, H.: Nuclear engineering handbook. New York: McGraw-Hill handbooks; 1958, p. 8-27–8-29Suche in Google Scholar

Received: 2017-01-07
Published Online: 2022-02-28

© 2017 Carl Hanser Verlag GmbH & Co. KG

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110680/html
Button zum nach oben scrollen