Startseite Technik Investigation of neutronic and safety parameters variation in 5 MW research reactor due to U3O8Al fuel conversion to ThO2 + U3O8Al
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of neutronic and safety parameters variation in 5 MW research reactor due to U3O8Al fuel conversion to ThO2 + U3O8Al

  • Z. Gholamzadeh , S. A. H. Feghhi , Z. Alipoor , M. Vahedi , S. M. Mirvakili , H. Bagheri und C. Tenreiro
Veröffentlicht/Copyright: 28. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Thorium-based fuels could comprise several advantages and are being investigated as a potentially competitive option with uranium-based fuels for research or power reactors. The present study investigates computationally the application of two different thorium-based fuels in a research reactor. Void and temperature reactivity coefficients, safety factor, power peaking factor, neutron generation time, effective delayed neutron fraction and 135Xe worth parameter were investigated for the fuel conversions. The results showed both the investigated fuels would not significantly disturb neutronic and safety parameters of the modeled core in comparison with its routine fuel loading. However, 235-enriched thorium based fuel concluded in noticeably reduction of High Level Waste (HLW) but 233-enriched type could be taken in attention because of its longer fuel cycle (̴15%) and integrated neutron flux (̴23%).

Abstract

Brennstoffe auf der Grundlage von Thorium können verschiedene Vorteile mit sich bringen und werden als Option für Uran-basierte Brennstoffe für Forschungs- oder Leistungsreaktoren betrachtet. Im vorliegenden Beitrag wird die Anwendung zwei verschiedener Thorium-basierter Brennstoffe in einem Forschungsreaktor rechnerisch unter-sucht. Void- und Temperaturkoeffizienten, Sicherheitsfaktor, Leistungsspitzen, Neutronenerzeugung, effektiver Anteil verzögerter Neutronen und die 135Xe Reaktivität wurden untersucht. Die Ergebnisse zeigen, dass beide untersuchte Brennstoffe das Verhalten der Neutronen und der Sicherheitsparameter des modellierten Kerns nicht wesentlich verändern im Vergleich zum üblichen Brennstoff. Allerdings ergibt sich bei Brennstoff auf der Grundlage von angereichertem Thorium-235 eine merkliche Reduktion von hochradioaktivem Abfall, während Thorium-233 basierter Brennstoff einen längeren Brennstoffzyklus (̴15%) und integrierten Neutronenfluss (̴23%) hat.

Acknowledgements

Authors are grateful to Reactor Research School, Nuclear Science and Technology Research Institute for supporting the research.

References

1 Li, X. X.; Cai, X. Z.; D. Z. Y. W. Ma, Jiang; Huang, J. F.; Zou, C. Y.; Yu, C. G.; Han, J. L.; Chen, J. G.: Analysis of thorium and uranium based nuclear fuel options in Fluoride salt-cooled High-temperature Reactor. Progres in Nuclear Energy 78 (2015) 285, DOI:10.1016/j.pnucene.2014.10.00410.1016/j.pnucene.2014.10.004Suche in Google Scholar

2 Breza, J.; Darˇílek, P.; Necˇas, V.: Study of thorium advanced fuel cycle utilization in light water reactor VVER-440. Annals of Nuclear Energy 37 (2010) 685, DOI:10.1016/j.anucene.2010.02.00310.1016/j.anucene.2010.02.003Suche in Google Scholar

3 Fukaya, Y.: Development of simple method to incorporate out-of-core cooling effect on thorium conversion in multi-pass fueled reactor and investigation on characteristics of the effect. Annals of Nuclear Energy 81 (2015) 301, DOI:10.1016/j.anucene.2015.03.00510.1016/j.anucene.2015.03.005Suche in Google Scholar

4 Zhu, G.; Zou, Y.; Xu, H.; Dai, Y.; Li, M.; Yan, R.: Uranium utilization with thorium blanket in Pebble Bed Fluoride salt-cooled high temperature reactor. Progress in Nuclear Energy 83 (2015) 374, DOI:10.1016/j.pnucene.2015.04.01510.1016/j.pnucene.2015.04.015Suche in Google Scholar

5 Jeong, C. J.; Park, C. J.; Il Ko, W.: Dynamic analysis of a thorium fuel cycle in CANDU reactors. Annals of Nuclear Energy 35 (2008) 1842, DOI:10.1016/j.anucene.2008.04.01010.1016/j.anucene.2008.04.010Suche in Google Scholar

6 Rachamin, R.; Fridman, E.; Galperin, A.: Feasibility assessment of the once-through thorium fuel cycle for the PTVM LWR concept, Annals of Nuclear Energy 85 (2015) 1119–1130, DOI:10.1016/j.anucene.2015.07.03010.1016/j.anucene.2015.07.030Suche in Google Scholar

7 Vu, T. M.; Kitada, T.: Seed and blanket ADS using thorium–reprocessed fuel: Parametric survey on TRU transmutation performance and safety characteristics. Annals of Nuclear Energy 78 (2015) 176, DOI:10.1016/j.anucene.2014.12.01810.1016/j.anucene.2014.12.018Suche in Google Scholar

8 Wols, F. J.; Kloosterman, J. L.; Lathouwers, D.; Van der Hagen, T. H. J. J.: Analysis of the running-in phase of a Passively Safe Thorium Breeder Pebble Bed Reactor. Annals of Nuclear Energy 81 (2015) 227, DOI:10.1016/j.anucene.2015.02.04310.1016/j.anucene.2015.02.043Suche in Google Scholar

9 Mirvakili, S. M.; Keyvani, M.; Safaei Arshi, S.; Khalafi, H.: Possibility evaluation of eliminating the saturated control fuel element from Tehran research reactor core. Nuclear Engineering and Design 248 (2012) 197, DOI:10.1016/j.nucengdes.2012.03.01410.1016/j.nucengdes.2012.03.014Suche in Google Scholar

10 Pelowitz, D. B.: (2008) Users’ manual versión of MCNPX2.6.0, LANL, LA-CP-07-1473Suche in Google Scholar

11 Fensin, M. L.: Development of the MCNPX depletion capability: A Monte Carlo depletion method that automates the Coupling between MCNPX and CINDER90 for high fidelity burn up calculations. Florida University (2008).Suche in Google Scholar

12 Gholamzadeh, Z.; Mirvakili, S. M.; Feghhi, S. A. H.: Neutronic performance of (ReprocessedU/Th)O2 fuel in CANDU 6 reactor. KERNTECHNIK 80 (2015) 263, DOI:10.3139/124.11049910.3139/124.110499Suche in Google Scholar

Books · Bücher

Performance of Models in Radiological Impact Assessment for Normal Operation. Report of Working Group 1 Reference Methodologies for Controlling Discharges of Routine Releases of EMRAS II Topical Heading Reference Approaches for Hu- man Dose Assessment Environmental Modelling for Radiation Safety (EMRAS II) Programme. IAEA-TECDOC-1808, Pub- lished by the International Atomic Energy Agency 2017, ISBN 978-92-0-112616-0, 96 pp., 18.00 EUR.

Environmental assessment models are used for evaluating the radiological impact of actual and potential releases of radionuclides to the environment. They are essential tools for use in the regulatory control of routine discharges to the environment and also in planning measures to be taken in the event of accidental releases; they are also used for pre- dicting the impact of releases which may occur far into the fu- ture, for example, from underground radioactive waste repo- sitories. It is important to verify, to the extent possible, the reliability of the predictions of such models by comparison with measured values in the environment or by comparing them with the predictions of other models.

For the estimation of dose to members of the public, models which include mathematical representations of physical-chemical processes occurring in the environment are needed and different but consistent approaches can be applied by each modeller. It is important to ensure the consistency amongst the different approaches in order to provide tools for decision makers which enable similar conclusions to be reached for a similar exposure scenario, despite the possible differences in the results of the models. In order to compare different modelers’ results, it is important that the exposure scenario including, for example, the radioactive source term, the location of the member of the public to be considered, the exposure pathways, and the habit data and food consumption rates necessary to run the models are agreed upon in advance. Consequently, the differences in the results are only due to the different models characteristics. The intention of this work is not to define good or bad models but to try to explain and justify, where possible, such differences. Then, decision makers can make appropriate decisions knowing the limitations in environmental modelling by, for example, making conservative assumptions and including appropriate safety margins.

Received: 2016-04-20
Published Online: 2022-02-28

© 2017 Carl Hanser Verlag GmbH & Co. KG

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110636/html
Button zum nach oben scrollen