Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
-
S. S. Aleshin
, A. S. Bikeev , S. N. Bolshagin , M. A. Kalugin , E. K. Kosourov , A. M. Pavlovichev , A. V. Pryanichnikov , E. A. Sukhino-Khomenko , Anna I. Shcherenko , Anastasia I. Shcherenko und D. A. Shkarovskiy
Abstract
Two types of calculations were made to compare BIPR-7A and MCU results for 3D full-scale models. First EPS (emergency protection system) efficiency and in-core power distributions were analyzed for an equilibrium fuel load of VVER-1000 assuming its operation within an 18-month cycle. Computations were performed without feedbacks and with fuel burnup distributed over the core. After 3D infinite lattices of full-scale VVER-1000 fuel assemblies (FA's) with uranium fuel 4.4 % enrichment and uranium-erbium fuel 4.4 % enrichment and Er2O3 1 % wt were considered. Computations were performed with feedbacks and fuel burnup at the constant power level. For different time moments effective multiplication factor and power distribution were obtained. EPS efficiency and reactivity effects at chosen time moments were analyzed.
Kurzfassung
In diesem Beitrag werden 3D-Rechnungen für zwei Modelle in Orginalgröße (Kern und Brennelement) mit den Programmen MCU und BIPR-7A vorgestellt. Dazu werden zum einen Berechnungen für eine Gleichgewichtskernbeladung eines WWER-1000-Reaktors und zum anderen für ein einzelnes Brennelement durchgeführt und die Ergebnisse verglichen. Während die Berechnungen des gesamten Kerns eine Abbrandverteilung über dem Kern, aber keine Rückwirkungen berücksichtigen, werden bei den letztgenannten Rechnungen Rückwirkungen und Abbrand bei einer kontanten Leistung angenommen.
References
1 Alexeyev, N. I.; Bolshagin, S. N.; Gomin, E. A.; Gorodkov, S. S.; Gurevich, M. I.; Kalugin, M. A.; Kulakov, A. S.; Marin, S. V.; Novoseltsev, A. P.; Olejnik, D. S.; Prianichnikov, A. V.; Sukhino-Khomenko, E. A.; Shkarovsky, D. A.; Yudkevich, M. S.: The status of MCU-5. Physics of Atomic Nuclei, 12/2012, 75 (14)10.1134/S1063778812140025Suche in Google Scholar
2 Bikeev, A. S.; Kalugin, M. A.; Shkarovsky, D. A.: MCU Code Precision Calculation of the Power Release in a VVER-1000 Core at Nominal Power Taking Feedbacks into Account. Atomic Energy114 (2013) 315–31710.1007/s10512-013-9717-8Suche in Google Scholar
3 Novikov, A. N.: Development of VVER physical calculation codes. Proc. of the tenth Symp. of AER. Moscow, Russia, Oct. 18–22, 2000, v. 1, pp. 433–448Suche in Google Scholar
4 Aleshin, S. S.; Bolobov, P. A.; Bolshagin, S. N. et al.: Verification of third-generation code package for VVER. Ibid., pp. 169–227Suche in Google Scholar
5 Sidorenko, V. D. etal.: Spectral Code TVS-M for Calculation of Characteristics of Cells, Supercells and Fuel Assemblies of VVER-Type Reactors. 5th Symposium of the AER, Dobogoko, October 15–20, 1995Suche in Google Scholar
6 Lazarenko, A. P.; Pryanichnikov, A. V.; Kalugin, M. A.; Gurevich, M.I.: Development of Multi-Group Spectral Code TVS-M. 21st Symposium of AER on VVER Reactor Physics and Reactor Safety, September 19–23, 2011, Dresden, GermanySuche in Google Scholar
7 Bolobov, P. A.; Bolshagin, S. N.; Bychkov, S. A.; Kalashnikov, A. G.; Kalugin, M. A.; Pavlovichev, A. I.; Styrine, Y. A.: Core Benchmarks Description Report. ORNL/SUB/00-85B99398V-6. Prepared by RRC KI. Published by ORNL, May 2001. 78Suche in Google Scholar
8 Multi-purpose computer center of NRC “Kurchatov Institute”, http://computing.kiae.ru/Suche in Google Scholar
9 Vukalovic, M. P.: Thermophysical properties of water and steam. Publishers Mechanical Engineering, 1967, p. 60Suche in Google Scholar
10 Passage, G.; Stefanova, S.; Petkov, P.; Shcheglov, A. S.; Proselkov, V. N.: Computational investigation of the temperature and geometric characteristics of VVÉR fuel in the Kozlodui nuclear power plant (Bulgaria) under normal operating conditions. Atomic Energy101 (2006) 790–79610.1007/s10512-006-0170-9Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2014
- Technical Contributions/Fachbeiträge
- Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark
- Development of codes and KASKAD complex
- Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
- Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
- An analysis of reactivity prediction during the reactor start-up process
- Experimental and computational investigations of heat and mass transfer of intensifier grids
- Implementation of CFD module in the KORSAR thermal-hydraulic system code
- Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
- Analyses of Beyond Design Basis Accident Homogeneous Boron Dilution Scenarios
- Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
- Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
- Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
- Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark
- Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2014
- Technical Contributions/Fachbeiträge
- Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark
- Development of codes and KASKAD complex
- Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
- Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
- An analysis of reactivity prediction during the reactor start-up process
- Experimental and computational investigations of heat and mass transfer of intensifier grids
- Implementation of CFD module in the KORSAR thermal-hydraulic system code
- Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
- Analyses of Beyond Design Basis Accident Homogeneous Boron Dilution Scenarios
- Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
- Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
- Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
- Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark
- Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors