Home Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors
Article
Licensed
Unlicensed Requires Authentication

Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors

  • L. Shishkov , S. Gorodkov , E. Mikailov and E. Sukhino-Khomenko
Published/Copyright: August 24, 2015
Become an author with De Gruyter Brill

Abstract

Jacketless fuel assemblies change their form in the course of operation. Often they bow lengthwise. Primarily, these fuel assembly (FA) bows threaten to reduce the control rods' fall rate, but at the same time they change (e. g. increase) the amount of moderator in inter-assembly gaps, thus producing additional power surges. Gap sizes vary randomly and their impact is accounted for with the help of engineering margin factors. For VVER-1000, this account of engineering margin factors increases the fuel component of electricity generation cost by 3–5%, and a half of this increase is due to inter-assembly gap variations. This paper discusses the technique used to account for the impact produced by these gaps on fuel rod power; gives numerical values of sensitivity factors for power variations vs. gap sizes depending on the computational model assumed; and discusses the interference of gap effects and the account of power and coolant temperature feedbacks.

Kurzfassung

Während des Betriebs von KKW verändern die Abstandshalter der Brennelemente ihre Form, so dass sich beispielsweise kleine Abweichungen und Spalte zwischen den Brennelementen bilden können. Diese können sowohl die Moderatormenge lokal verändern und zu lokalen Leistungsschwankungen führen als auch den Einfall der Kontrollstäbe lokal behindern. Ihr Einfluss auf die Leistungsverteilung im Kern sollte in Berechnungen berücksichtigt werden. In diesem Beitrag wird eine Technik zur Berücksichtigung dieser Effekte durch die Einführung ingenieurtechnischer Toleranzfaktoren vorgestellt. Dabei werden auch Sensitivitäten und Überlagerungen mit anderen Parametern diskutiert.


* E-mail: ;

References

1 Ponomarenko, G. L.: Accounting for VVER-1000 FA bow on fuel rod power. Atomnaya Energiya87 (1999) 210213 (in Russian)Search in Google Scholar

2 Ponomarenko, G. L.; Voronkov, A. V.; Gorokhov, A. K.: Probabilistic method to assess the effect of gaps between FAs on VVER-1000 core power. Atomnaya Energiya91 (2001) 522526 (in Russian)10.1023/A:1012478319043Search in Google Scholar

3 Ponomarenko, G. L.; Bykov, M. A.; Podshibyakin, A. K.: Simulation of itemized power distributions in VVER core for safety analyses. Atomnaya Energiya94 (2003) 339344 (in Russian)Search in Google Scholar

4 Fetterman, R. J.; Franceschini, F.: Westinghouse assembly bow methodology package. Safety Analysis Approach. International Conference on Reactor Physics, Nuclear Power, Switzerland, Sept. 14–19, 2008Search in Google Scholar

5 FranceschiniF.; FettermanR. J.; Little, D. C.: Modification of the ANC nodal code for analysis of PWR assembly bow. International Conference on the Physics of Reactors 2008, PHYSOR 08Search in Google Scholar

6 Tsyganov, S. V.; Marin, S. V.; Shishkov, L. K.: The procedure for determination of special margin factors to account for a bow of the VVER-1000 fuel assemblies. International Conference on the Physics of Reactors 2008, PHYSOR 08Search in Google Scholar

7 Shishkov, L. K.; Gorodkov, S. S.; Mikailov, E. F.; Sukhino-Homenko, E. A.; SumarokovaA.S.: Interfering effects of deviations of multiplying properties of fuel assemblies on power distribution in VVER reactors. Neutronics-2013 Seminar, Obninsk, Russian Federation, Nov. 5–8, 2013 (in Russian)Search in Google Scholar

8 Shishkov, L. K.; Gorodkov, S. S.; Mikailov, E. F.; Sukhino-Homenko, E. A; Sumarokova, A. S.: Accounting for impact of FA gap deviations in VVER-1000 on engineering margin factors. Proceedings of the twenty-fourth Symposium of AER. Sochi, Russian Federation, Oct. 2014, pp. 111128Search in Google Scholar

9 Tutnov, A.; Tutnov, An.; Alekseev, E.; Kaidalov, V.; Samoilov, O.: Simulation results of fuel assembly caving in the WWER-1000 reactor core. Proceedings of the Fourth International Conference on WWER Fuel Performance, Modeling and Experimental Support, Albena Congress Center, Bulgaria, 2003Search in Google Scholar

10 Troyanov, V. M.; Likhachev, Yu. I.; Folomeev, V. I.: Computational technique for lateral/axial bend of jacketless FAs under VVER-1000 operational loads. Yadernaya Energetika2 (2002) Obninsk (in Russian)Search in Google Scholar

11 Alexeyev, N. I.; Bolshagin, S. N.; Gomin, E. A.; Gorodkov, S. S.; Gurevich, M. I.; Kalugin, M. A.; Kulakov, A. S.; Marin, S. V.; Novoseltsev, A. P.; Olejnik, D. S.; Prianichnikov, A. V., Sukhino-Khomenko, E. A.; Shkarovsky, D. A.; Yudkevich, M. S.: Status MCU-5. Problems of Atomic Science and Technology4 (2011) 4Search in Google Scholar

Received: 2015-02-02
Published Online: 2015-08-24
Published in Print: 2015-08-27

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2014
  7. Technical Contributions/Fachbeiträge
  8. Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark
  9. Development of codes and KASKAD complex
  10. Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
  11. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
  12. An analysis of reactivity prediction during the reactor start-up process
  13. Experimental and computational investigations of heat and mass transfer of intensifier grids
  14. Implementation of CFD module in the KORSAR thermal-hydraulic system code
  15. Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
  16. Analyses of Beyond Design Basis Accident Homogeneous Boron Dilution Scenarios
  17. Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
  18. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
  19. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
  20. Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark
  21. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110518/html
Scroll to top button