Home Implementation of CFD module in the KORSAR thermal-hydraulic system code
Article
Licensed
Unlicensed Requires Authentication

Implementation of CFD module in the KORSAR thermal-hydraulic system code

  • Yu. V. Yudov , I. G. Danilov and S. S. Chepilko
Published/Copyright: August 24, 2015
Become an author with De Gruyter Brill

Abstract

The Russian KORSAR/GP (hereinafter KORSAR) computer code was developed by a joint team from Alexandrov NITI and OKB “Gidropress” for VVER safety analysis and certified by the Rostechnadzor of Russia in 2009. The code functionality is based on a 1D two-fluid model for calculation of two-phase flows. A 3D CFD module in the KORSAR computer code is being developed by Alexandrov NITI for representing 3D effects in the downcomer and lower plenum during asymmetrical loop operation. The CFD module uses Cartesian grid method with cut cell approach. The paper presents a numerical algorithm for coupling 1D and 3D thermal-hydraulic modules in the KORSAR code. To ensure mass and energy balances at the interface, convective fluxes for 1D module are calculated as a sum of fluxes at corresponding boundary faces of 3D module. Mass balance condition is used to couple pressures in the modules. The combined pressure field is calculated by the multigrid method. The performance efficiency of the algorithm for coupling 1D and 3D modules was demonstrated by solving the benchmark problem of mixing cold and hot flows in a T-junction.

Kurzfassung

Das russische Programm KORSAR/GP (im Nachfolgenden KORSAR genannt) wurde in Zusammenarbeit von den Firmen Alexandrov NITI und OKB ? Gidropress“ zur Berechnung von Sicherheitsanalysen von WWER entwickelt und durch Rostechnadzor of Russia im Jahre 2009 zertifiziert. Basierend auf einem eindimensionalen Zweifluidmodell werden Zweiphasenströmungen berechnet. Für dieses Programm wurde von Alexandrov NITI ein 3D CFD Module zur Berechnung von dreidimensionalen Phänomenen im Downcomer und im unteren Plenum bei asymmetrischem Loopbetrieb entwickelt. Im Beitrag wird ein numerischer Algorithmus zur Kopplung der thermohydraulischen 1D und 3D Module in KORSAR beschrieben. Bei der Kopplung werden Massen- und Energiebilanzen an den Grenzflächen eingehalten. Die Leistungsfähigkeit dieses Algorithmus wird an einem Benchmark zur Mischung kalter und heißer Strömungen in einer T-Verbindung dargestellt.


* E-mail:

References

1 Yudov, Yu. V.: Development of two-fluid model for thermal-hydraulics in the nuclear reactor systems with water coolant (in Russian). Ph.D. Thesis, Saint-Petersburg, 2001Search in Google Scholar

2 Yudov, Yu. V.; Chepilko, S. S.; Danilov, I. G.: Development of CFD solver for the KORSAR computer code using the immersed boundary method. Proc. 8th Int. Conf. Safety Analysis of VVER Nuclear Plants, Podolsk, Russia, may 28–31, 2013Search in Google Scholar

3 Weaver, W.; Tomlinson, E.; Aumiller, D.: A generic semi-implicit coupling methodology for use in RELAP5–3D. Nuclear Engineering and Design211 (2002) 1310.1016/S0029-5493(01)00422-8Search in Google Scholar

4 Ji, H.; Lien, F.-S.; Yee, E.: A robust and efficient cut-cell/ghost-cell method with adaptive mesh refinement for moving boundaries on irregular domains. Computer Methods in Applied Mechanics and Engineering198 (2008) 43210.1016/j.cma.2008.08.015Search in Google Scholar

5 Lima, G.; Ferreira, V.; Cirilo, E.; et al.: A continuously differentiable upwinding scheme for the simulation of fluid flow problems. Applied Mathematics and Computation218. (2012) 861410.1016/j.amc.2012.02.024Search in Google Scholar

6 Kim, D.; Choi, H.: A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. Journal of Computational Physics162 (2000) 41110.1006/jcph.2000.6546Search in Google Scholar

Received: 2015-01-29
Published Online: 2015-08-24
Published in Print: 2015-08-27

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2014
  7. Technical Contributions/Fachbeiträge
  8. Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark
  9. Development of codes and KASKAD complex
  10. Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
  11. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
  12. An analysis of reactivity prediction during the reactor start-up process
  13. Experimental and computational investigations of heat and mass transfer of intensifier grids
  14. Implementation of CFD module in the KORSAR thermal-hydraulic system code
  15. Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
  16. Analyses of Beyond Design Basis Accident Homogeneous Boron Dilution Scenarios
  17. Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
  18. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
  19. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
  20. Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark
  21. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110510/html
Scroll to top button