Thermal-hydraulic modeling of reactivity accidents in MTR reactors
- 
            
            
        H. Khater
        
Abstract
This paper describes the development of a dynamic model for the thermal-hydraulic analysis of MTR research reactor during a reactivity insertion accident (RIA). The model is formulated for coupling reactor kinetics with feedback reactivity and the reactor core thermal-hydraulics. Two channels are considered; the average and the hot channels to represent the reactor core. The developed computer program is compiled and executed on a personal computer using the FORTRAN language. The model is validated by safety-related benchmark calculations for MTR-TYPE reactors of IAEA 10 MW generic reactor for both slow and fast reactivity insertion transients. A good agreement is shown between the present model and the benchmark calculations. The model is used for simulating uncontrolled withdrawal of a control rod for the ETRR-2 reactor in transient with over power scram trip. The simulation results for the ETRR-2 are analyzed and discussed.
Kurzfassung
In der vorliegenden Arbeit wird die Entwicklung eines dynamischen Modells für die thermohydraulische Analyse von MTR Forschungsreaktoren während eines Reaktivitätsunfalls (RIA) beschrieben. Das Modell wird für eine gekoppelte Reaktorkinetik mit Reaktivitätsfeedback und Reaktorkern Thermohydraulik formuliert. Das Computerprogramm wurde in FORTRAN für PC Anwendungen entwickelt. Das Modell wird validiert mit Hilfe von Sicherheits-bezogenen Benchmarkberechnungen für MTR Reaktoren des IAEA10 MW generischen Reaktors für langsame und schnelle Reactivity Insertion Transients. Zwischen dem entwickelten Modell und den Benchmarkberechnungen zeigt sich eine gute Übereinstimmung. Das Modell wird verwendet zur Simulation der unkontrollierten Entfernung eines Steuerungsstabes für den ETRR-2 Reaktor im Transientenmodus mit Over Power Scram Trip. Die Simulationsergebnisse für den ETRR-2 Reaktor werden analysiert und diskutiert.
References
1IAEA: Research Reactor Core Conversion from the use of Highly Enriched Uranium to the use of Low Enriched Uranium Fuels. Guidebook. TECDOC 233, TECDOC 643, 1980Suche in Google Scholar
2Woodruff, W. L.: A kinetic and thermal-hydraulic capability for the analysis of research reactors. Nuclear Technology64 (1984) 196Suche in Google Scholar
3Mirza, A. M.; Khanan, S.; Mirza, N. M.: Simulation of reactivity transient current MTRS. Annals of Nuclear Energy25 (1998) 146510.1016/S0306-4549(98)00020-6Suche in Google Scholar
4Nasir, R.; Mirza, N. M.; Mirza, S. M.: Sencitivity of reactivity insertion limits with respect to safety parameters in a typical MTR. Annals of Nuclear Energy26 (1999) 1517Suche in Google Scholar
5Housiadas, C.: Simulation of Loss of Flow transients in research reactors. Annals of Nuclear Energy27 (2000) 168310.1016/S0306-4549(00)00053-0Suche in Google Scholar
6Sanchez, J.: On the Numerical Solution of the Point Reactor Kinetics Equations by Generalized Runge-Kutta Methods. Nuclear Science and Engineering103 (1989) 94Suche in Google Scholar
7Housiadas, C.: Lumped parameter analysis of coupled kinetics and thermal-hydraulic for small reactor. Annals of Nuclear Energy29 (2002) 1315Suche in Google Scholar
8Meyer, J. E.: Hydrodynamic models for the treatment of reactor thermal transients. Nuclear Science and Engineering10 (1961) 269Suche in Google Scholar
9Obenchin, C. F.: PARET-A Program for the Analysis of Reactor Transients. ACE Research and Development Report, IDO-17282, 1969Suche in Google Scholar
10Lax, P.; Wendroff, B.: Systems of Conservation Laws. Comm. On Pure and Appl. Math.13 (1960) 21710.1002/cpa.3160130205Suche in Google Scholar
11Collier, J. G.; Thome, J. R.: Convective Boiling and Condensation. Oxford Science Publications, Third Edition, 1996Suche in Google Scholar
12Rohsenow, W. M.; Choi, H. Y.: Heat, mass, momentum transfer. Prentice-Hall, Inc.Englewood Cliffs, N. J. (1961)Suche in Google Scholar
13NobuakiOhnishi; KiyomiIshijima; SadanitsuTanzawa: A Study of Subcooled Film-Boiling Under Reactivity-Initiated Accident Conditions in Light Water Reactors. Nuclear Science and Engineering88 (1984) 33110.13182/NSE84-A18587Suche in Google Scholar
14Tong, L. S.; Currin, H. B.: DNB (Burnout) Studies in an Open Lattice Core. USAEC Report WCAP-3736 (1964)Suche in Google Scholar
15Dougal, R. S.; Rohsenow, W. M.: Film Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Qualities. MIT Report 9079–26 (1963)Suche in Google Scholar
16McDoough, J. B.; Milich, E.; King, E. C.: An Experimental Study of Partial Film Boiling Region with water at Elevated Pressure in a Round Vertical Tube. A.I.Ch.E Preprint No. 29, Fourth National Heat Transfer Confernce (1960)Suche in Google Scholar
17Bernath, L.: A Theory of Local-Boiling Burnout and its Application to Existing Data. Chem. Eng. Prog., Symp. SER.56 (1960) 95–116Suche in Google Scholar
18Munoz-Cobo, J. L.; Chiva, S.; Sekhri, A.: A reduced order model of BWR dynamics with subcooled boiling and modal kinetics: application to out of phase oscillations. Annals of Nuclear Energy31 (2004) 1135Suche in Google Scholar
19Zuber, N.; Stube, F. W.; Bijwaard, G.: Vapor Void Fraction in Sub cooled Boiling and in Saturated Boiling Systems: From Proceedings of the Third International Heat Transfer Conference, Chicago, Illinois, August 7 to 12, 1966, New York: American Institute of Chemical Engineering, Volume V, 1966, 24–38Suche in Google Scholar
20Kuo-FuChen: Effect of System Pressure On Reactor Power Limits Criteria: Nuclear Reactor Safety, July 14, 1992Suche in Google Scholar
21ETRR-2: Egypt Second Reactor Safety Analysis Report (SAR), 1998Suche in Google Scholar
© 2007, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Wavelet techniques for the determination of the decay ratio in boiling water reactors
- Analytical and experimental investigations of shear stress in rod bundles with irregular cells
- Incineration of weapon grade plutoniumin a (DT) fusion driven hybrid reactor using various coolants
- Calculation of the pin power distribution for a thorium reactor assembly and benchmarking
- Comparative assessment of methods for the reactivity measurement in subcritical systems by pulsed experiments
- Thermal-hydraulic modeling of reactivity accidents in MTR reactors
- Prediction of the onset of flow instability in the ETRR-2 research reactor under loss of flow accident
- Time-dependent albedo problem for quadratic anisotropic scattering
- HN solutions of the time dependent linear neutron transport equation for a slab and a sphere
- Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering
- The effects of different expansions of the exit distribution on the extrapolation length for linearly anisotropic scattering
- Technical Note
- Shadowing the earth from Lagrange Point L1
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Wavelet techniques for the determination of the decay ratio in boiling water reactors
- Analytical and experimental investigations of shear stress in rod bundles with irregular cells
- Incineration of weapon grade plutoniumin a (DT) fusion driven hybrid reactor using various coolants
- Calculation of the pin power distribution for a thorium reactor assembly and benchmarking
- Comparative assessment of methods for the reactivity measurement in subcritical systems by pulsed experiments
- Thermal-hydraulic modeling of reactivity accidents in MTR reactors
- Prediction of the onset of flow instability in the ETRR-2 research reactor under loss of flow accident
- Time-dependent albedo problem for quadratic anisotropic scattering
- HN solutions of the time dependent linear neutron transport equation for a slab and a sphere
- Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering
- The effects of different expansions of the exit distribution on the extrapolation length for linearly anisotropic scattering
- Technical Note
- Shadowing the earth from Lagrange Point L1