Startseite Wavelet techniques for the determination of the decay ratio in boiling water reactors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Wavelet techniques for the determination of the decay ratio in boiling water reactors

  • C. Sunde und I. Pázsit
Veröffentlicht/Copyright: 6. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The usefulness of wavelet transform and wavelet filtering techniques for the improvement of the estimation of the decay ratio (DR), characterising the stability of BWRs, is discussed. There are two distinct areas investigated. The first concerns the improvement of the quality of the traditionally used auto-correlation function (ACF) for the estimation of the DR, by trend elimination and denoising. The subsequent estimation of the DR itself is made by traditional methods such as the peak-to-peak method or curve fitting. The second area is the estimation of the DR by the use of continuous wavelet transform. The possibility of estimating two different DRs in case of dual oscillations, and in particular the finding of the higher DR, is also investigated. It was found that wavelet pre-processing does not always improve the estimation of the ACF of a non-ideal signal, compared to other methods; but for signals containing various trends and data scatter in the ACF, it brings a noticeable improvement. As an extension of the discrete wavelet methods, the continuous wavelet transform appears to be a promising candidate to determine the critical DR even in the case of two oscillations being co-existent with different stability properties. The methods investigated or developed here were also tested on measured data from Swedish BWRs.

Kurzfassung

Der Nutzen von Wavelet-Transformations- und Wavelet-Filtertechniken zur Verbesserung der Bestimmung der Zerfallsrate, die die Stabilität von Siedewasserreaktoren charakterisiert, wird diskutiert. Dabei werden 2 getrennte Bereiche untersucht. Der erste Bereich betrifft die Verbesserung der Qualität der traditionell für die Zerfallsrate verwendeten Auto-Korrelationsfunktion durch Elimination von seriellen Abhängigkeiten oder Trends und Denoising. Die daraus folgende Bestimmung der Zerfallsrate selbst wird mit traditionellen Methoden wie z. B. der Peak-to-Peak- oder Curve Fitting-Methode durchgeführt. Der zweite Bereich ist die Bestimmung der Zerfallsrate mit Hilfe kontinuierlicher Wavelet-Transformationen. Die Möglichkeit der Bestimmung zweier verschiedener Zerfallsraten im Falle dualer Oszillationen und insbesondere die Bestimmung der höheren Zerfallsrate wird ebenfalls untersucht. Es stellte sich heraus, dass Wavelet Pre-Processing im Vergleich im anderen Methoden nicht immer die Bestimmung eines der Auto-Korrelationsfunktion eines nicht idealen Signals verbessert, aber für Signale mit verschiedenen Trends und Datenstreuung in der Auto-Korrelationsfunktion bringt es eine merkliche Verbesserung. Als Erweiterung der diskreten Wavelet-Methoden scheint die konti-nuierliche Wavelet-Transformation eine aussichtsreiche Methode zur Bestimmung der kritischen Zerfallsrate, auch wenn zwei Oszillationen mit verschiedenen Stabilitätseigenschaften gleichzeitig vorhanden sind. Die hier untersuchten oder entwickelten Methoden wurden auch mit Hilfe von Messergebnissen schwedischer Siedewasserreaktoren überprüft.

References

1Thie, J. A.: Dynamic behaviour of boiling reactors. ANL-5849, Argonne National Laboratory, 1959Suche in Google Scholar

2March-Leuba, J.; Cacuci, D. G.; Perez, R. B.: Nonlinear dynamics and stability of boiling water reactors: part 1 – qualitative analysis. Nuclear Science and Engineering93 (1986) 111Suche in Google Scholar

3Konno, H.; Kanemoto, S.; Takeuchi, Y.: Parametric stochastic stability and decay ratio for a stochastic nonlinear BWR model below the Hopf bifurcation. Annals of Nuclear Energy26 (1999) 1465Suche in Google Scholar

4Analytis, G. Th.; Hennig, D.; Karlsson, J. K.-H.: The physical mechanism of core-wide and local instabilities at the Forsmark-1 BWR. Nuclear Engineering and Design205 (2001) 9110.1016/S0029-5493(00)00371-XSuche in Google Scholar

5Hotta, A.; Suzawa, Y.; Takeuchi, H.: Development of BWR regional instability model and verification based on Ringhals-1 test. Annals of Nuclear Energy.24 (1997) 140310.1016/S0306-4549(97)00004-2Suche in Google Scholar

6Hotta, A.; Ninokata, H.: Numerical study on observed decay ratio of coupled neutronic-thermal hydraulic instability in Ringhals Unit 1 under random noise excitation. Journal of Nuclear Science and Technology39 (2002) 13810.1080/18811248.2002.9715167Suche in Google Scholar

7Smed, T.; Lansåker, P.: The MATSTAB code for calculation of the decay ratio. Personal communication (1999)Suche in Google Scholar

8van der Hagen, T. H. J. J.; Zboray, R.; de Kruijf, W. J. M.: Questioning the use of the decay ratio in BWR stability monitoring. Annals of Nuclear Energy.27 (2000) 72710.1016/S0306-4549(00)82013-7Suche in Google Scholar

9van der Hagen, T. H. J. J.; Pázsit, I.; Thomson, O.; Melkerson, B.: Methods for determination of the in-phase and out-of-phase stability characteristics of a boiling water reactor. Nuclear Technology107 (1994) 193Suche in Google Scholar

10Behringer, I.; Hennig, D.: A novel auto-correlation function method for the determination of the decay ratio in BWR stability analysis. Annals of Nuclear Energy29 (2002) 1483Suche in Google Scholar

11Pázsit, I.: Determination of reactor stability in case of dual oscillations. Annals of Nuclear Energy.22 (1995) 377Suche in Google Scholar

12van der Hagen, T. H. J. J.: Artificial neural networks versus conventional methods for boiling water reactor stability monitoring. Nuclear Technology.109 (1995) 286Suche in Google Scholar

13Tambouratzis, T.; Antonopoulos-Domis, M.: On-line stability monitoring of BWRs using artificial neural networks. Annals of Nuclear Energy.26 (1999) 1287Suche in Google Scholar

14Tsuji, M.; Shimazu, Y.: Evaluation of the Decay Ratio of BWRs using Singular Value Decomposition Method. Journal of Nulcear Science and Technology.42 (2005) 169Suche in Google Scholar

15Tsuji, M.; Michishita, H.; Shimazu, Y.: Stability monitoring for BWR based on Singular Value Decomposition Mehtod using Artificial Neural Networks. Journal of Nuclear Science and Technology42 (2005) 1054Suche in Google Scholar

16Tambouratzis, T.; Antonopoulos-Domis, M.: Parameter estimation during a transient – application to BWR stability. Annals of Nuclear Energy.31 (2004) 2077Suche in Google Scholar

17Antonopoulos-Domis, M.; Tambouratzis, T.: System identification during a transient via wavelet multiresolution analysis followed by spectral techniques. Annals Nuclear Energy25 (1998) 465Suche in Google Scholar

18Espinosa-Paredes, G.; Prieto-Guerrero, A.; Núnez-Carrera, A.; Amador-Garcia, R.: Wavelet-based method for instability analysis in boiling water reactors. Nuclear Technology151 (2005) 250Suche in Google Scholar

19Pázsit, I. (Editor): Investigation of regional instability in Ringhals-1. CTH-RF-100/RR-1. Chalmers University of Technology1993Suche in Google Scholar

20Lefvert, T.: Ringhals 1 stability benchmark, Final report. NEA/NSC/DOC(96)22 1996Suche in Google Scholar

21Thomson, O.; Garis, N. S.; Pázsit, I.: Quantitative analysis of detector string impacting. Nuclear Technology120 (1997) 71Suche in Google Scholar

22Addison, P.: The Illustrated Wavelet Transform Handbook. Institute of Physics Publishing, London, 200210.1887/0750306920Suche in Google Scholar

23Matlab, 2000. Wavelet Toolbox User's Manual. Matworks Inc.Suche in Google Scholar

24Pázsit, I.; Kitamura, Y.; Wright, J.; Misawa, T.: Calculation of the pulsed Feynman-alpha formulae and their experimental verification. Annals Nuclear Energy32 (2005) 896Suche in Google Scholar

25Staszewski, W. J.: Identification of damping in modf systems using time-scale decomposition. Journal of sound and vibration.203 (1997) 283Suche in Google Scholar

26Staszewski, W. J.: Analysis of non-linear systems using wavelets. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering.214 (2000) 133910.1243/0954406001523317Suche in Google Scholar

27Hera, A.; Hou, Z.: Wavelet approach for damage detection using experimental data of ASCE benchmark Study. Proceedings of 16th ASCE Engineering Mechanics Conference, July 16–18, University of Washington, Seattle, 2003Suche in Google Scholar

28Carmona, R. A.; Hwang, W. L.; Torrésani, B.: Characterization of Signal by the Ridges of Their Wavelet Transforms. IEEE Transactions on Signal Processing.45 (1997) 258610.1109/78.640725Suche in Google Scholar

29Delprat, N.; Escudié, B.; Guillemain, P.; Kronland-Martinet, R.; Tchamitchian, P.; Torr'esani, B.: 1992. Asymptotic Wavelet and Gabor Analysis: Extraction of Instantaneous Frequencies. IEEE Transactions on Information Theory28 (1992) 64410.1109/18.119728Suche in Google Scholar

30Tsuji, M.; Shimazu, Y.: Evaluation of the Decay Ratio of BWRs using Singular Value Decomposition Method. Journal of Nuclear Science and Technology42 (2005) 169Suche in Google Scholar

31Sunde, C.; Pázsit, I.: Investigation of detector tube impacting in the Ringhals-1 BWR. International Journal of Nuclear Energy Science and Technology2 (2006) 18510.1504/IJNEST.2006.010714Suche in Google Scholar

Received: 2006-8-16
Published Online: 2013-04-06
Published in Print: 2007-03-01

© 2007, Carl Hanser Verlag, München

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.100312/html
Button zum nach oben scrollen