Home Time-dependent albedo problem for quadratic anisotropic scattering
Article
Licensed
Unlicensed Requires Authentication

Time-dependent albedo problem for quadratic anisotropic scattering

  • R. G. Türeci and D. Türeci
Published/Copyright: April 6, 2013
Become an author with De Gruyter Brill

Abstract

Case's eigenfunctions and their orthogonality relations can be improved assuming pure-quadratic anisotropic neutron scattering. As a result, the infinite medium Green function can be written with those eigenfunctions terms. Choosing the appropriate boundary conditions and using the method of singular eigenfunctions, the half-space values are obtained. Our numerical results for this problem are reported.

Kurzfassung

Die Case-Eigenfunktionen und die entsprechenden Orthogonalitätsrelationen können verbessert werden für rein quadratisch anisotrop gestreute Neutronen. Es folgt daraus, dass die Greenfunktion für unendliche Medien mit solchen Eigenfunktionstermen beschrieben werden kann. Für geeignete Randbedingungen können so mit der Methode singulärer Eigenfunktionen die Halbraumlösungen erhalten werden. Über die numerischen Ergebnisse zu diesem Problem wird berichtet.

References

1Kušc|ver, I.; Zweifel, P. F.: Time-dependent one speed albedo problem for a semi-infinite medium. Journal of Mathematical Physics6 (1965) 1125Search in Google Scholar

2Case, K. M.; Zweifel, P. F.: Linear Transport Theory. Massachusetts: Addison-Wesly (1967)Search in Google Scholar

3Shieh, P. S.; Siewert, C. E.: On the albedo problem for a finite plane parallel Rayleigh scattering atmosphere. The Astrophysical Journal155 (1969) 265Search in Google Scholar

4Grandjean, P.; Siewert, C. E.: The FN method in neutron transport theory Part II: applications and numerical results. Nucl. Sci. Eng.69 (1979) 161Search in Google Scholar

5McCormick, N. J.; Kušc|ver, I.: Half-space neutron transport with linearly anisotropic scattering. Journal of Mathematical Physics6 (1965) 193910.1063/1.1704744Search in Google Scholar

6Kavenoky, A.: La Grade de Docteur es Sciences Physiques, La Methode CN Resolution de L'equation du Transport, ORSAY Serie a No d'ordre. A L'universite de Paris-Sud: 100103 (1973)Search in Google Scholar

7Tezcan, C.; Güleçyüz, M. Ç.; Erdogan, F.: A new approach of solving the third form of the transport equation in plane geometry: half-space albedo problem. JQSRT.55 (1996) 251Search in Google Scholar

8Tezcan, C.; Kaşkaş, A.; GüleçyüzM. Ç.: The HN Method for solving linear transport equation: theory and applications. JQSRT.78 (2003) 24310.1016/S0022-4073(02)00224-8Search in Google Scholar

9Yıldız, C.: Influence of anisotropic scattering on the size of time-dependent Systems in monoenergetic neutron transport. J. Phys. D: Appl. Phys.33 (1999) 704Search in Google Scholar

10Mika, J.: Neutron transport with anisotropic scattering. Nucl. Sci. Eng.11 (1961) 415Search in Google Scholar

11Kanal, M.; Torabi, A. F.: An infinite medium Green's function for the in an anhomogeneous anisotropically scattering medium. TTSP.8 (1979) 169Search in Google Scholar

12Tezcan, C.: Third form of the transport equation for extremely anisotropic scattering kernel. JQSRT.55 (1996) 33Search in Google Scholar

13Protopopescu, V.; Sjöstrand, N. G.: On the solution of the dispersion equation for monoenergetic neutron transport with quadratically anisotropic Scattering. CHT-RF-36, Chalmers University, SwedenSearch in Google Scholar

Protopopescu, V., Sjöstrand, N. G., 1981. Progress Nuclear Energy7, 4710.1016/0149-1970(81)90059-7Search in Google Scholar

Received: 2006-9-26
Published Online: 2013-04-06
Published in Print: 2007-03-01

© 2007, Carl Hanser Verlag, München

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100319/html
Scroll to top button