Abstract
High strength aluminum alloys have a face-centered cubic structure and it is not easy to form hydrides due to the extremely low solubility of hydrogen. Therefore, it is very difficult to test and characterize hydrogen in the high-strength aluminum alloys. In this work, the penetration of hydrogen and the distribution of hydrogen near the crack tip in the highstrength aluminum alloy were analyzed by time of flight secondary ion mass spectrometry (TOF-SIMS). Meanwhile, the test method of trace H in highstrength aluminum alloy was investigated by using TOF-SIMS technology.
Keywords: High strengthaluminumalloys; hydrogen; TOF-SIMS; ion beam technology; characterization; surfaces
Published Online: 2021-02-13
Published in Print: 2020-09-01
© 2020 by Walter de Gruyter Berlin/Boston
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Titelei
- CONTENTS
- Materials Testing
- FACHBEITRÄGE
- Early stage crack detection in mechanically joined steel/aluminum joints by condition monitoring
- Microstructure, mechanical and corrosion properties of TIG welded Hastelloy C-276
- Residual stress evaluation during RSW of DP600 sheet steel
- Capability of martensitic low transformation temperature welding consumables for increasing the fatigue strength of high strength steel joints
- Hydroforming analysis of exhaust pipe connectors
- TiC coatings on an alloyed steel produced by thermal diffusion
- Mechanical and dielectric behavior of LDPE/Bi-1212 films
- Effect of heat treatment on corrosion and ultrasonic cavitation erosion resistance of AlSi10MnMg alloy
- Effect of impact source on detection quality in impact echo testing of sleeve grouting
- Influence of fiber weight ratio on the mechanical and water absorption performance of borassus/epoxy composites
- Effect of loading rate on cohesive parameters of the adhesive Araldite 2015
- Fatigue behavior of unbonded prestressed reactive powder concrete beams after creep
- Optimization of flank wear and surface roughness during turning of AISI 304 stainless steel using the Taguchi method
- Characterization of hydrogen in a high strength aluminum alloy
- BEZUGSQUELLEN
- IMPRESSUM
Schlagwörter für diesen Artikel
High strengthaluminumalloys;
hydrogen;
TOF-SIMS;
ion beam technology;
characterization;
surfaces
Artikel in diesem Heft
- Titelei
- CONTENTS
- Materials Testing
- FACHBEITRÄGE
- Early stage crack detection in mechanically joined steel/aluminum joints by condition monitoring
- Microstructure, mechanical and corrosion properties of TIG welded Hastelloy C-276
- Residual stress evaluation during RSW of DP600 sheet steel
- Capability of martensitic low transformation temperature welding consumables for increasing the fatigue strength of high strength steel joints
- Hydroforming analysis of exhaust pipe connectors
- TiC coatings on an alloyed steel produced by thermal diffusion
- Mechanical and dielectric behavior of LDPE/Bi-1212 films
- Effect of heat treatment on corrosion and ultrasonic cavitation erosion resistance of AlSi10MnMg alloy
- Effect of impact source on detection quality in impact echo testing of sleeve grouting
- Influence of fiber weight ratio on the mechanical and water absorption performance of borassus/epoxy composites
- Effect of loading rate on cohesive parameters of the adhesive Araldite 2015
- Fatigue behavior of unbonded prestressed reactive powder concrete beams after creep
- Optimization of flank wear and surface roughness during turning of AISI 304 stainless steel using the Taguchi method
- Characterization of hydrogen in a high strength aluminum alloy
- BEZUGSQUELLEN
- IMPRESSUM