Abstract
In this study, resistance spot welding (RSW) process has been used on DP600 automotive steel at pressures of 2, 3, 4, 5 and 6 bar at a welding current of 7 kA. Microstructure, hardness and residual stress were examined to evaluate the effect of the welding pressure. An experiment at 5 kA and 6 bar was also conducted to investigate the effect of welding current on this behavior of steel sheet. The results show that microhardness values were higher in the welding region than in any other parts. There was no considerable change in the hardness behavior versus the welding pressure applied except for the sample welded at 7 kA and 4 bar. When the welding current changed from 7 to 5 kA, hardness improved. Residual stress evaluation reveals that compression stress was found in the specimens, and the specimen welded at 5 kA and 6 bar exhibited the highest residual stress.
© 2020 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Titelei
- CONTENTS
- Materials Testing
- FACHBEITRÄGE
- Early stage crack detection in mechanically joined steel/aluminum joints by condition monitoring
- Microstructure, mechanical and corrosion properties of TIG welded Hastelloy C-276
- Residual stress evaluation during RSW of DP600 sheet steel
- Capability of martensitic low transformation temperature welding consumables for increasing the fatigue strength of high strength steel joints
- Hydroforming analysis of exhaust pipe connectors
- TiC coatings on an alloyed steel produced by thermal diffusion
- Mechanical and dielectric behavior of LDPE/Bi-1212 films
- Effect of heat treatment on corrosion and ultrasonic cavitation erosion resistance of AlSi10MnMg alloy
- Effect of impact source on detection quality in impact echo testing of sleeve grouting
- Influence of fiber weight ratio on the mechanical and water absorption performance of borassus/epoxy composites
- Effect of loading rate on cohesive parameters of the adhesive Araldite 2015
- Fatigue behavior of unbonded prestressed reactive powder concrete beams after creep
- Optimization of flank wear and surface roughness during turning of AISI 304 stainless steel using the Taguchi method
- Characterization of hydrogen in a high strength aluminum alloy
- BEZUGSQUELLEN
- IMPRESSUM
Artikel in diesem Heft
- Titelei
- CONTENTS
- Materials Testing
- FACHBEITRÄGE
- Early stage crack detection in mechanically joined steel/aluminum joints by condition monitoring
- Microstructure, mechanical and corrosion properties of TIG welded Hastelloy C-276
- Residual stress evaluation during RSW of DP600 sheet steel
- Capability of martensitic low transformation temperature welding consumables for increasing the fatigue strength of high strength steel joints
- Hydroforming analysis of exhaust pipe connectors
- TiC coatings on an alloyed steel produced by thermal diffusion
- Mechanical and dielectric behavior of LDPE/Bi-1212 films
- Effect of heat treatment on corrosion and ultrasonic cavitation erosion resistance of AlSi10MnMg alloy
- Effect of impact source on detection quality in impact echo testing of sleeve grouting
- Influence of fiber weight ratio on the mechanical and water absorption performance of borassus/epoxy composites
- Effect of loading rate on cohesive parameters of the adhesive Araldite 2015
- Fatigue behavior of unbonded prestressed reactive powder concrete beams after creep
- Optimization of flank wear and surface roughness during turning of AISI 304 stainless steel using the Taguchi method
- Characterization of hydrogen in a high strength aluminum alloy
- BEZUGSQUELLEN
- IMPRESSUM