Bio-Medical Materials in Human Joint Implants — A Review
-
Hassan S. Hedia
Abstract
Since the introduction of aseptic surgery by Lister towards the end of the eighteenth century, engineering materials have been implanted into the human body in many forms. Implant surgery has developed to the extent that implants are now used in most branches of surgery and are becoming increasingly more sophisticated. Orthopaedic surgery probably uses more implants than any other branch of medicine. Fracture fixation being one of the oldest and most common applications. This literature review tries to inclusively summarize the recent development in bio-medical materials and its applications in human joint implants up to year 2010.
Kurzfassung
Seit Einführung der aseptischen Chirugie durch Lister gegen Ende des 18. Jahrhunderts warden Werkstoffe in vielfältiger Weise in den menschlichen Körper eingesetzt. Die Implantatchirugie hat sich so weit entwickelt, das heute Implantate in fast allen chirugischen Bereichen verwendet werden und sie immer höheren Ansprüchen genügen. In der Orthopädie werden offensichtlich mehr Implantate als in iregendeinem anderen medizinischen Bereich eingesetzt. Die Bruchfixierung stellt hierbei eines der ältesten und der häufigsten Einsatzgebiete dar. Die vorliegende Literaturstudie versucht einen möglichst umfassenden Überblick zu den neuesten Entwicklungen von biomedizinischen Werkstoffen und ihren Anwendungen in Humangelenken bis zum Jahr 2010 zu geben.
Literatur
1 D.Dowson and V.Wright, Editors, An introduction to the biomechanics of joints and joint replacement, Mechanical Engineering Publications Ltd, London (1981).Suche in Google Scholar
2 http://hsc.csu.edu.au/senior_science/core/bionics/9_3_3/933net.htmlSuche in Google Scholar
3 http://hsc.csu.edu.au/senior_science/core/bionics/9_3_1/931net.htmlSuche in Google Scholar
4 http://www.zimmer.com/zportal/page?PID=pgBodyLayout.html&XML=zimmer.un-00.en.consumer.service.education.pgHip-Surgery.xmlSuche in Google Scholar
5 D. F.Williams: Definitions in Biomaterials, Elsevier, Amsterdam (1987)Suche in Google Scholar
6 D. F.Williams: Medical and Dental Materials, Pergamon Press, Oxford (1990)Suche in Google Scholar
7 J. T.Scales: Arthroplasty of the hip using foreign materials: A history, Proceedings of the Institution of Mechanical Engineers 181 (1967), Part 3J, pp. 63–8410.1243/PIME_CONF_1966_181_208_02Suche in Google Scholar
8 D.Dowson, J. R.Atkinson, K.Brown: The wear of high molecular weight polyethylene with particular reference to its use in arti- ficial human joints, Advances in Polymer Friction and Wear5B (1975), pp. 533–548Suche in Google Scholar
9 J. R.Atkinson, J. M.Dowling, R. Z.Cicek: Materials for internal prostheses: The present position and possible future developments, Journal of Biomaterials1 (1980), No. 2, pp. 89–9310.1016/0142-9612(80)90005-8Suche in Google Scholar
10 AESCULAP Implants and Instruments for Osteosynthesis Catalogue (186-C/2/87), Aesculap-Werke, Germany (1987)Suche in Google Scholar
11 The Intermedics APR Universal Hip System With Cancellous-Structured Titanium, Catalogue of Internledics Orthopedics Incorporation (1987)Suche in Google Scholar
12 The Intermedics PREMIER-TOTAL HIP System, A Natural-Implant, Catalogue of Intermedics Orthopedics Incorporation, Ref. No. 512/835- (1000-01-600), Sulzer Medica (1971)Suche in Google Scholar
13 The Intermedics APR Universal Hip System Collared Revision Stem, Catalogue of Intermedics Orthopedics Incorporation (1989)Suche in Google Scholar
14 PERFECTA Femoral Prostheses with T-Matrix Acetabular Options Surgical Protocol, Catalogue by ORTHOMET Incorporation, USA (1990)Suche in Google Scholar
15 Weber Permalock Hip Prostheses Product Information, Catalogue by ALLOPRO, Ref. No. 1661d/e/f – Ed. 11/90, Sulzer Medica (1990)Suche in Google Scholar
16 J. C.Anderson: High density and ultra-high molecular weight polyethylenes: Their wear properties and bearing applications, Tribology International (1982), pp. 43–4710.1016/0301-679X(82)90111-6Suche in Google Scholar
17 A.Unsworth: Tribology of human and artificial joints, Proceedings of the Institution of Mechanical Engineers 205 (1991), Part H3, pp. 163–172Suche in Google Scholar
18 J.Fisher, D.Dowson: Tribology of total artificial joints, Proceedings of the Institution of Mechanical Engineers 205 (1991), Part H2, pp. 73–79Suche in Google Scholar
19 J. M.Dowling, J. R.Atkinson, D.Dowson, J.Charnley: Characterization of worn polyethylene acetabular cups in relation to service time in the human body, Mechanical Properties of Biomaterials (1980), pp. 39–52Suche in Google Scholar
20 H.Ishikawa, H.Fujiki, K.Yasuda: Contact analysis of UHMWPE articular plate in artificial knee joint during gait movement, Journal of Biomedical Engineering118 (1996), No.3, pp. 377–386Suche in Google Scholar
21 I. C.Clarke, H.McKellop: The wear of Derlin 150 compared with polyethylene, polyester and PTFE; Mechanical Properties of Biomaterials (1980), pp. 27–37Suche in Google Scholar
22 R. L.Fusaro: Self-lubricating polymer composites and polymer transfer film lubrication for space applications, Tribology International90 (1990), No. 2, pp. 105–12210.1016/0301-679X(90)90043-OSuche in Google Scholar
23 G. M.Farling, K.Greer: An improved bearing material for joint replacement prostheses: Carbon fibre-reinforced ultra high molecular weight polyethylene, Mechanical Properties of Biomaterials (1990), pp. 53–64Suche in Google Scholar
24 A. I.Sviridyonok: Self-lubrication mechanisms in polymer composites, Tribology International24 (1991), No.1, pp. 37–4310.1016/0301-679X(91)90061-DSuche in Google Scholar
25 U. S.Tewari, J.Bijwe, J. N.Mathur, I.Sharma: Studies on abrasive wear of carbon fiber (short) reinforced polyamide composites, Tribology International25 (1992), No. 1, pp. 53–6010.1016/0301-679X(92)90121-3Suche in Google Scholar
26 C. G.Clarke, C.Allen: The water lubricated, sliding wear behaviour of polymeric materials against steel, Tribology International24 (1991), No. 2, pp. 109–11810.1016/0301-679X(91)90041-7Suche in Google Scholar
27 J. K.Lancaster: The lubricated wear of polymers, Proceedings of the 11th Leeds-Lyon Symposium on Lubricated Wear, London (1985)Suche in Google Scholar
28 K.Ikeuchi, M.Oka: The role of synovial fluid in joint lubrication, Tribology Series 30: Lubricants and Lubrication (1995), pp. 65–71Suche in Google Scholar
29 D.Dowson, I. W.Linnett: A Study of the wear of ultra high molecular weight polyethylene against a high alumina ceramic, Mechanical Properties of Biomaterials (1980), pp. 3–25Suche in Google Scholar
30 J.Hinterberger, M.Ungethum, W.Plitz: Tribological properties of aluminium oxide ceramics, Mechanical Properties of Biomaterials (1980), pp. 73–82Suche in Google Scholar
31 J. T.Scales, K. W. J.Wright: Stanmore total hip replacement with ceramic femoral head, Mechanical Properties of Biomaterials (1980), pp. 103–109Suche in Google Scholar
32 F.Hild, D.Marquis, O.Kadouch, J. P.Lambelin: Analysis of the failure of ceramics due to subcritical crack growth, Journal of Engineering Materials and Technology118 (1996) No. 3, pp. 343–34810.1115/1.2806816Suche in Google Scholar
33 Y. S.Wang, S. M.Hsu, R. G.Munro: A wear model for alumina sliding wear, Proceedings of the Japan International Tribology Conference (1990), pp. 1225–1230Suche in Google Scholar
34 M. G.Gee: Results from a UK interlaboratory project on dry sliding wear of alumina, Wear Testing of Advanced Materials (1992), pp. 129–15010.1520/STP23862SSuche in Google Scholar
35 A. J.Perez-Unzueta, J. H.Beynon, M. G.Gee: The effect of surrounding atmosphere on the sliding wear of alumina, Wear146 (1991), pp. 179–19610.1016/0043-1648(91)90233-KSuche in Google Scholar
36 M. G.Gee: The formation of aluminium hydroxide in the sliding wear of alumina, Wear153 (1992), pp. 201–22710.1016/0043-1648(92)90270-ISuche in Google Scholar
37 M. G.Gee: Wear testing and ceramics (Donald Julius Groen Prize Paper), Journal of Engineering Tribology208 (1994), Part J, pp. 153–16610.1243/PIME_PROC_1994_208_366_02Suche in Google Scholar
38 F.Hild, D.Marquis, O.Kadouk, J. P.Lambelin: Analysis of the failure of ceramics due to subcritical crack growth, Journal of Engineering Materials and Technology118 (1996), pp. 343–34810.1115/1.2806816Suche in Google Scholar
39 T. M.Keaveny, D. L.Bartel: Fundamental load transfer patterns for press-fit, surface-treated intramedullary fixation stems, Journal of Biomechanics27 (1994), No. 9, pp. 1147–115710.1016/0021-9290(94)90055-8Suche in Google Scholar
40 T.Yamamuro, T.Nakamura, R.Kasai, Y.Matsuda, K.Ido: A new model of hip prosthesis made of high-tech materials, Biomedical Engineering-Applications, Basis and Communications4 (1992), No. 6, pp. 610–612Suche in Google Scholar
41 N. D.Cristescu: ASME 1995 Nadai Lecture – Plasticity of porous and particulate materials, Journal of Engineering Materials and Technology118 (1996), pp. 145–15610.1115/1.2804880Suche in Google Scholar
42 R.Shirandami, I. I.Esat: New design of hip prosthesis using carbon fiber reinforced composite, Journal of Biomedical Engineering12 (1990), pp. 19–2210.1016/0141-5425(90)90109-ZSuche in Google Scholar
43 E.Wintermantel, B.Koch, J.Mayer: CAD, CAE and CAM for a new anisotropic carbon fiber reinforced hip endoprosthesis stem technology – Test procedures and qualifying preclinical results, Biomedical Engineering-Applications, Basis and Communications6 (1994), No. 1, pp. 19–21Suche in Google Scholar
44 M.Akay, N.AsIan: An estimation of fatigue life for a carbon fibre/polyether ether ketone hip joint prosthesis, Journal of Engineering in Medicine209 (1995), Part H, pp. 91–10310.1243/PIME_PROC_1995_209_325_02Suche in Google Scholar PubMed
45 Z. P.Bazant, I. M.Daniel, Z.Li: Size effect and fracture characteristics of composite laminates, Journal of Engineering Materials and Technology118 (1996), pp. 317–32410.1115/1.2806812Suche in Google Scholar
46 D. J.Wood: The characterization of particulate debris obtained from failed orthopedic implants – A research report, International Symposium for Biomaterials (1993), http://www.engr.sjsu.edu/WofMatE/projects/srproject/srproj3.htmlSuche in Google Scholar
47 H. S.Hedia, A. A. A.Abdel-Shafi, N.Fouda: The effect of elastic modulus of the metal backing material on the fatigue notch factor and stress, J. Bio-Medical Materials and Engineering10 (2000), No. 2000–3, pp. 141–156Suche in Google Scholar
48 H. S.Hedia: Stiffness optimization of cement and stem materials in total hip replacement, J. Bio-Medical Materials and Engineering11 (2001), No. 1, pp. 1–10Suche in Google Scholar
49 H.S.Hedia: Stress and Strain Distribution Behavior in the Bone Due to the Effect of Cancellous bone, Dental Implant Material and the Bone Height, in: J. Bio-Medical Materials and Engineering, Vol 12, No.2, pp. 111–119, 2002.Suche in Google Scholar
50 Kay L.Roybal: Pure titanium medical implants, Sicence Technology Highlights from the DOE National Laboratory Number 58 (June 26, 2000), Available http://www.lanl.gov/worldview/Suche in Google Scholar
51 J. Millican: The Surface Modification of titanium, in: 11th Annual SEA Student Technical Conference In Collaboration with the 100 th Centennial Celebration of the National Institute of Standards & Technology (NIST), (October, 2001), pp 256–258.Suche in Google Scholar
52 Medical Catalogue, Hip Implant Made From Composite Materials, Medical Technologies Partnering Event (2001), http://www.finn medi.fi/medica2001partnerihaku/catalo/Medica.pdfSuche in Google Scholar
53 H. S.Hedia, D. C.Barton, J.Fisher: Material optimization for femoral component of hip prosthesis based on the fatigue notch factor approach, J. Bio-Medical Materials and Engineering7 (1997), pp. 83–98Suche in Google Scholar
54 H. S.Hedia: Shape and material optimization of Charnley prosthesis to minimize stress shielding, 1st Minia International Conference for Advanced Trends in Engineering (MICATE’99) Vol. 5, pp. 31–59Suche in Google Scholar
55 H. S.Hedia: Parametric optimisation of materials for acetabular cup, J. Bio-Medical Materials and Engineering11 (2001), No. 2, pp. 79–88Suche in Google Scholar
56 H.S.Hedia: A New Design of Cement and Stem Stiffness in Total Hip Replacement Using FEA and Optimisation Techniques, in: 7th Cairo University International Conference on Mechanical Design & Production (MDP-7), (February 15–17, 2000), pp 250–254.Suche in Google Scholar
57 J.Charnley: Anchorage of the femoral head of the prosthesis to shaft of the femur, in: Journal of bone and Joint Surgery JBJS42B (1960), pp. 28–30.10.1302/0301-620X.42B1.28Suche in Google Scholar PubMed
58 J.Charnley: Low Friction Anthroplasty of the Hip, Springer, Berlin (1979), pp. 115–13010.1007/978-3-642-67013-8Suche in Google Scholar
59 B. M.Wroblewski: 15 to 21 year results with Charnley low friction arthroplasty, Clin. Orthop. Rel. Res.211 (1986), pp. 30–3510.1097/00003086-198610000-00005Suche in Google Scholar
60 Krause, W. and Mathis, R.S. “Fatigue properties of acrylic bone cements”, J. Biomed. Mat. Res. 2.2, (1988), pp. 37–53Suche in Google Scholar
61 D.Taylor, J. M.Moalic, F. M.Clarke, B.McCormack, J.Sheehan: Fibre reinforced bone cement, in: Eng. In Med., 17, (1988), pp. 31–35.Suche in Google Scholar
62 G.A.Bell; P.J.Hill: Rubber reinforced polymers for bone cement, in: Interfaces in Medicine and Mechanics, Ed. by K.R. William; in: Elsevier Science Publishers, England, (1989), pp. 317–330.Suche in Google Scholar
63 B.Weightman, M. A.Freeman, P. A.Revell: The mechanical properties of cement and lossening of the femoral hip replacements, Journal of Bone and Joint Surgery 69-B (1987), No. 4, pp. 558–564Suche in Google Scholar
64 K.Kawanage, J.Tamura, T.Yamamuro, T.Nakamura, T.Kokubo, S.Yoshihara: A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder, J. Appl. Biomater.4 (1993), pp. 135–14110.1002/jab.770040204Suche in Google Scholar
65 N.C.Nguyen; W.J.Maloney; and R.H.Dauskardt: Mechanics and Mechanisms of Crack Growth at or Near Interfaces in Cemented Load Bearing Prostheses, in: 19th Annual Meeting of the American Society of Biomechanics. Stanford University, (August 24–26, 1995), pp. 145–146.Suche in Google Scholar
66 R. M.Pilliar: Powder metal made orthopaedic implants with porous surface for fixation by tissue ingrowth, Clin Orthop Rel. Res.176 (1983), pp. 42–5110.1097/00003086-198306000-00007Suche in Google Scholar
67 J.Black: Orthopaedic Biomaterials, Churchill, Livingstone, New York, (1988), pp. 278–283Suche in Google Scholar
68 S.Nasser, P.A.Campbell, D.Kilgus: Cementless joint arthroplasty prostheses with titanium alloy articular surfaces, in: Clin. Orthop. Rel. Res.261, (1990), pp. 171–185.Suche in Google Scholar
69 L. L.Hench, E. C.Ethridge: Biomaterials on Interface Approach, Academic Press, New York (1982), pp. 244–255Suche in Google Scholar
70 H.Oonishi: Mechanical and chemical bonding of artificial joints, Clinical Materials5 (1990), pp. 217–23310.1016/0267-6605(90)90021-MSuche in Google Scholar
71 SwRI Keratin, Materials Engineering Department, Mechanical and Materials Engineering Division, http://keratin.swri.org/Suche in Google Scholar
72 Sulzer Technical Review 2 (1998)Suche in Google Scholar
73 D.Dowson, J.Fisher, Z. M.Jin, D. D.Auger, B.Jobbins: Design considerations for cushion from bearings in artificial hip joints, Proc. of the Institution of Mechanical Engineers 205 (H2), (1991), Part H, pp. 59–68Suche in Google Scholar
74 D. D.Auger, D.Dowson, J.Fisher, Z. M.Jin: Friction and lubrication in cushion form bearings for artificial hip joints, Proc. of the Institution of Mechanical Engineers 207 (H1) (1993), Part H, pp. 25–33Suche in Google Scholar
75 L.Caravia, D.Dowson, J.Fisher, P. H.Corkhill, B. J.Tighe: A comparison of friction in hydrogel and polyurethane materials, Journal of Material Science, Materials in Medicine4 (1993), pp. 515–52010.1007/BF00120132Suche in Google Scholar
76 G.McClure, Z. M.Jin, J.Fisher, B. J.Tighe: Determination of lubricating film thickness for permeable hydrogel and non-permeable polyurethane layers bonded to a rigid substrate with particular reference to cushion form hip joint replacements, Proc. of the Institution of Mechanical Engineers 210 (1996), pp. 89–93Suche in Google Scholar
77 M. J.Drews; M.LaBerge: An investigation of the fatigue induced failure modes of fiber/elastomer composites as bearing surfaces in total hip joint prosthesis, National Textile Center Annual Report (1996), http://www.ntcresearch.org/pdf-rpts/Bref0397/B97C94_2.pdfSuche in Google Scholar
78 G.H.Van Lenthe; N.Verdonschot; G.Bergmann; R.Huiskes: The effect of implant material on friction induced heating around total hip implants, in: 12th Conference of the European Society of Biomechanics, Dublin, (2000), pp. 143–145Suche in Google Scholar
79 S.Suresh, A.Mortensen: Fundamental of Functionally Graded Materials, Ashgate Publicating Co., Brookfield, (2000), http://ninas.mit.edu/lexcom/www/FGM.htmlSuche in Google Scholar
80 http://www.den.hokudai.ac.jp/rikou/topics-e.htmlSuche in Google Scholar
81 R.Miyao, A.Yokoyama, F.Watari, T.Kawasaki: Properties of Titanium/Hydroxyapatite functionally graded implants by spark plasma sintering and their biocompatibility, J. Dent. Mat.20 (2001), No. 6, pp. 344–355Suche in Google Scholar
82 G. Y.Kim, E.Saiz, S.Fujino, J. M.Gomez-Vega, G. W.Marshall, S. J.Marshall, A.P.Tomsia: 3864 Functionally graded coatings for metallic implants, Materials & Mechanical Properties, San Diego (2002), http://iadr.confex.com/iadr/2002SanDiego/techprogram/session_2027.htmSuche in Google Scholar
83 H. S.Hedia, M.Nemat-Alla: Design optimization of functionally graded dental implant, Biomed Mater Eng14 (2004), pp. 133–143Suche in Google Scholar
84 Hedia, H.S. “Design of Functionally Graded Dental Implant in the Presence of Cancellous Bone” J Biomed Mater Res Part B: Appl Biomater, Vol. 75B, (2005), pp. 74–80, An International Journal, USA10.1002/jbm.b.30275Suche in Google Scholar PubMed
85 H.S.Hedia: Effect of Coating thickness and its Material on the Stress distribution for Dental Implant, in: Journal of Medical Engineering & Technology, Vol. 31, No. 4, (July 2007), pp. 280–287, An International Journal, UK.10.1080/03091900600861616Suche in Google Scholar PubMed
86 H. S.Hedia, M. A. N.Shabara, T. T.El Midany, N.Fouda: A method of material optimization of cementless stem through functionally graded material, Int. J. Mech. Mater Des.1 (2005), pp. 329–34610.1007/s10999-005-3307-4Suche in Google Scholar
87 M.Nematt-Alla: Reduction of thermal stresses by developing two-dimensional functionally graded materials, Int. J. Solids Struct.40 (2003), pp. 7339–735610.1016/j.ijsolstr.2003.08.017Suche in Google Scholar
88 http://www.mtm.kuleuven.ac.be/Research/C2/overview_of_materials_under_investi gation/index.html Apper at 2010-06-29.Suche in Google Scholar
89 B.Vamsi Krishna, S.Bose, A.Bandyopadhyay: Low stiffness porous Ti structures for load-bearing implants was investigated, Acta Biomaterialia3 (2007), No. 6, pp. 997–100610.1016/j.actbio.2007.03.008Suche in Google Scholar PubMed
90 A.Muthutantri, J.Huang, M.Edirisinghe: Novel preparation of graded porous structures for medical engineering was investigated, J. R. Soc. Interface5 (2008), pp. 1459–146710.1098/rsif.2008.0092Suche in Google Scholar PubMed PubMed Central
© 2011, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Leichtbaupotenzial zyklisch belasteter Laserstrahl-Hybridschweißverbindungen aus S1100QL
- Bio-Medical Materials in Human Joint Implants — A Review
- Optimization of Compression Moulding Temperature for Polypropylene Materials
- Korrelation der Ermüdungsschädigung mit der Materialdämpfung in einer Aluminium-Gusslegierung
- Evaluating Waste Marble Dust as Floor Tile
- Production of Open Cell Aluminium Metal Foam with Lost Foam Technique
- Fabrication and Aging Behaviour of In-Situ Aluminum Composites
- Cleaning Sea Water from Petroleum Products by Using Rubber Powder
- Vorschau/Preview
- Vorschau
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Leichtbaupotenzial zyklisch belasteter Laserstrahl-Hybridschweißverbindungen aus S1100QL
- Bio-Medical Materials in Human Joint Implants — A Review
- Optimization of Compression Moulding Temperature for Polypropylene Materials
- Korrelation der Ermüdungsschädigung mit der Materialdämpfung in einer Aluminium-Gusslegierung
- Evaluating Waste Marble Dust as Floor Tile
- Production of Open Cell Aluminium Metal Foam with Lost Foam Technique
- Fabrication and Aging Behaviour of In-Situ Aluminum Composites
- Cleaning Sea Water from Petroleum Products by Using Rubber Powder
- Vorschau/Preview
- Vorschau