Fabrication and Aging Behaviour of In-Situ Aluminum Composites
-
Yaman Erarslan
Abstract
Commonly applied in situ procedures with the aim of producing alumina particles or whiskers include the reactions between a metal oxide and aluminum. The metal, reduced with the alumina formation reaction, afterwards generally reacts with Al and transforms into an intermetallic form which will act as a reinforcing member in the composition of the matrix. In this study, by adding CuO powder in ratios of 5, 10 and 15 wt.-% composite billets were produced by the in situ procedure of stir casting. XRD patterns and microstructures of the produced Al-Al2O3 composites were examined by using optical and electron microscopy (SEM). Following the homogenization procedure on the composite material, hot deformation and thermal aging procedures were applied. The changes in the mechanical properties were compared with commercially pure Aluminum.
Kurzfassung
Üblicherweise angewendete in-situ-Verfahren mit dem Ziel der Produktion von Alumnium-Partikeln oder Whiskern schließen Reaktionen zwischen einem Metalloxid und Alumnium ein. Dabei reagiert das durch die Bildung der Aluminide reduzierte Metall anschließend generell mit Aluminium und wandelt in eine intermetallische Form um, die als festigsteigerndes Element in der Matrix wirkt. In der diesem Beitrag zugrunde liegenden Studie wurden Kompositproben mit dem in-situ-Verfahren des Rührgießens hergestellt, wobei CuO-Pulver in Anteilen von 5, 10 und 15 wt.-% zugemischt wurde. Die so hergestellten Al-Al2O3 Kompositwerkstoffe wurden mittels XRD sowie optischer und Rasterlektronenmikroskopie untersucht. Nach einer entsprechenden Homogenisierung wurden Warmwalz- und thermische Alterungsverfahren angewendet. Die Änderung der mechanischen Eigenschaften wurde mit kommerziellem Reinaluminium verglichen.
References
1 P.C.Maity, S.C.Panigrahi, P.N.Chakraboty: Preparation of Al-MgAl2O4-MgO in situ particle-composites by addition of MnO2 particles to molten Al-2wt%Mg alloys, Mater. Lett.20 (1994), pp. 93–9710.1016/0167-577X(94)90068-XSearch in Google Scholar
2 M. E.Smagorinsky, P. G.Tsantrisos, S.Gernier, A.Cavasin, T.Bresinsky, G.Kim: The properties and microsutructure of Al-based composites reinforced with ceramic particles, Mater. Sci. Eng. A244 (1998), pp. 86–9010.1016/S0921-5093(97)00830-7Search in Google Scholar
3 M. K.Surappa: Microstructure evolution during solidification of DRMMCs (Discontinuously reinforced metal matrix composites): State of art, J. Mater. Proc. Tech. 63 (1997), No. 3, 325–33310.1016/S0924-0136(96)02643-XSearch in Google Scholar
4 L.David, M.Singh: In situ composites: Science and technology, M. Singh, D. Lewis (Eds.): Proceeding of Material Week’ 93, TMS, Warrendale, PA, (1994), pp. 37–43Search in Google Scholar
5 S. C.Tjong, Z. Y.Ma: Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R29 (2000), pp. 49–11310.1016/S0927-796X(00)00024-3Search in Google Scholar
6 H.Nakata, T.Choh, N.Kanetake: Fabrication and mechanical properties of in situ formed carbide particulate reinforced aluminium composite, J. Mater. Sci.30 (1995), pp. 1719–172710.1007/BF00351601Search in Google Scholar
7 M.Hoseini, M.Meritian: Tensile properties of in-situ aluminium-alumina composites, Mater. Lett.59 (2005), pp. 3414–341810.1016/j.matlet.2005.06.006Search in Google Scholar
8 G.Chen, G.X.Sun: Study on in situ reaction-processed Al-Zn/σ-Al2O3(p) composites, Mater. Sci. Eng. A244 (1998), pp. 291–29510.1016/S0921-5093(97)00544-3Search in Google Scholar
9 M. S.Hu, J.Yang, H. C.Cao, A. G.Evans, R.Mehrabian: The mechanical properties of Al alloys reinforced with continuous Al2O3 fibers, Acta. Metall.40 (1992), No. 9, pp. 2315–232610.1016/0956-7151(92)90150-DSearch in Google Scholar
10 T.Fan, D.Zhang, G.Yang, T.Shibayanagi, M.Naka: Fabrication of in situAl2O3/Al composite via remelting, J. Mater. Proc. Tech.142 (2003), No. 2, pp. 556–56110.1016/S0924-0136(03)00659-9Search in Google Scholar
11 P. C.Maity, S. C.Panigrahi, P. N.Chakraborty: Mechanical properties of hot worked Al-5CuO particle composite, J. Mater. Proc.94 (1999), No. 2, pp. 179–18210.1016/S0924-0136(99)00105-3Search in Google Scholar
12 B.Dutta, M. K.Surappa: Age-hardening behaviour of Al-Cu-SiCp composites synthesized by casting route, Scr. Metall. Mater.32 (1995), No. 5, pp. 731–73610.1016/0956-716X(95)91594-FSearch in Google Scholar
13 S.V.Kamat, A. D.Rollett, J. P.Hirth: Plastic deformation in Al-alloy matrix-alumina particulate composites, Scr. Metall. Mater.25 (1991), pp. 27–3210.1016/0956-716X(91)90348-5Search in Google Scholar
14 C.Maity, P. N.Chakraborty, S. C.Panigrahi: Al-Al2O3 in situ particle composites by reaction of CuO particles in molten pure Al, Mater. Letts.30 (1997), pp. 147–15110.1016/S0167-577X(96)00188-7Search in Google Scholar
15 P. C.Maity, S. C.Panigrahi, P. N.Chakraborty: Preparation of aluminium-alumina in-situ particle composite by addition of titania to aluminium melt, Scr. Metall. Mater.28 (1993), pp. 549–55210.1016/0956-716X(93)90194-WSearch in Google Scholar
16 R. H.Pestes, S. V.Kamat, J. P.Hirth: Effect of microstructural parameters on the yield strength of Al-4%Mg/Al2O3p composites, Scr. Metall. Mater.30 (1994), pp. 963–96710.1016/0956-716X(94)90538-XSearch in Google Scholar
17 C. H.Henager, Jr., J. L.Birmhall, J. P.Hirth: Synthesis of a MoSi2-SiC composite in situ using a solid state displacement reaction, Mater. Sci. Eng. A155 (1992), pp. 109–11410.1016/0921-5093(92)90318-USearch in Google Scholar
18 P.Sahoo, M.J.Kozcak: Analysis of in situ formation of titanium carbide in Aluminum alloys, Mater. Sci. Eng. A144 (1991), pp. 37–44Search in Google Scholar
19 M.Kobashi, T.Choh: The fabrication of particulate composite by in-situ oxidation process, in: Light Met.42 (1992), No. 3, pp. 138–14210.2464/jilm.42.138Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Leichtbaupotenzial zyklisch belasteter Laserstrahl-Hybridschweißverbindungen aus S1100QL
- Bio-Medical Materials in Human Joint Implants — A Review
- Optimization of Compression Moulding Temperature for Polypropylene Materials
- Korrelation der Ermüdungsschädigung mit der Materialdämpfung in einer Aluminium-Gusslegierung
- Evaluating Waste Marble Dust as Floor Tile
- Production of Open Cell Aluminium Metal Foam with Lost Foam Technique
- Fabrication and Aging Behaviour of In-Situ Aluminum Composites
- Cleaning Sea Water from Petroleum Products by Using Rubber Powder
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Leichtbaupotenzial zyklisch belasteter Laserstrahl-Hybridschweißverbindungen aus S1100QL
- Bio-Medical Materials in Human Joint Implants — A Review
- Optimization of Compression Moulding Temperature for Polypropylene Materials
- Korrelation der Ermüdungsschädigung mit der Materialdämpfung in einer Aluminium-Gusslegierung
- Evaluating Waste Marble Dust as Floor Tile
- Production of Open Cell Aluminium Metal Foam with Lost Foam Technique
- Fabrication and Aging Behaviour of In-Situ Aluminum Composites
- Cleaning Sea Water from Petroleum Products by Using Rubber Powder
- Vorschau/Preview
- Vorschau