Startseite Synthesis in water-free DMF, characterization, electrical, and gas sensing properties of bis[2-(2-aminoethylamino)ethanol]copper(II) dibromide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis in water-free DMF, characterization, electrical, and gas sensing properties of bis[2-(2-aminoethylamino)ethanol]copper(II) dibromide

  • Sülin Taşcıoğlu EMAIL logo , Bahattin Yalçın , Fatih Dumludağ und Esra Kakı
Veröffentlicht/Copyright: 16. März 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

2-(2-Aminoethylamino)ethanol (L) reacts with cupric bromide in dimethylformamide to give a mononuclear complex of Cu(II) [L2Cu]Br2, with six-coordinate distorted octahedral geometry, in which two molecules of tridentate (N,N,O) ligand are involved. The structure was confirmed by spectroscopic methods, elemental and thermogravimetric analyses, and magnetic measurements. Optimization of possible configurations indicated the formation of the trans structure of the complex. Experimental results indicate that the investigated complex, bis[2-(2-aminoethylamino)ethanol] copper(II) bromide, behaves as a semiconductor in the studied temperature range of 298–388 K. Gas sensing properties of the film for the volatile organic compounds (VOCs): acetone, tetra-chloromethane, chloroform, ethanol, and methanol, were also investigated as a function of vapor concentration and temperature in dark. The film showed maximum sensitivity to tetrachloromethane and ethanol vapors at room temperature. Responses of the film to the tested gases are reversible.

[1] Azadbakht, R., Amiri, H. A., & Bruno G. (2011). Bis[2-(2-aminoethylamino)ethanol]copper(II) dinitrate. Acta Crystallographica Section E, 67, M1203. DOI: 10.1107/s1600 536811030637. http://dx.doi.org/10.1107/S160053681103063710.1107/S1600536811030637Suche in Google Scholar

[2] Bendahan, M., Lauque, P., Seguin, J. L., Aguir, K., & Knauth, P. (2003). Development of an ammonia gas sensor. Sensors and Actuators B: Chemical, 95, 170–176. DOI: 10.1016/s0925-4005(03)00408-8. http://dx.doi.org/10.1016/S0925-4005(03)00408-810.1016/S0925-4005(03)00408-8Suche in Google Scholar

[3] Breckenridge, J. G. (1948). Copper(II) and nickel(II) coordination compounds with diethylenetriamine and hydroxyl-ethylethylenediamine. Canadian Journal of Research, 26b, 11–19. DOI: 10.1139/cjr48b-004. http://dx.doi.org/10.1139/cjr48b-00410.1139/cjr48b-004Suche in Google Scholar

[4] Chastain, R. V., & Dominick, T. L. (1973). Crystal structure of bis[N-(2-hydroxyethyl)ethylenediammine]copper(II) perchlorate, [Cu(C4H12N2O)2](ClO4)2. Inorganic Chemistry, 12, 2621–2625. DOI: 10.1021/ic50129a026. http://dx.doi.org/10.1021/ic50129a02610.1021/ic50129a026Suche in Google Scholar

[5] Choi, C. G., Lee, S., & Lee, W. J. (1996). NO gas-sensing characteristics of copper phthalocyanine film prepared by plasmaactivated evaporation. Sensors and Actuators B: Chemical, 32, 77–82. DOI: 10.1016/0925-4005(96)80112-2. http://dx.doi.org/10.1016/0925-4005(96)80112-210.1016/0925-4005(96)80112-2Suche in Google Scholar

[6] Connors, K. A. (1990). Chemical kinetics: The study of reaction rates in solution. Cambridge, England, UK: VCH. Suche in Google Scholar

[7] Çapan, R., Açıkbaş, Y., & Evyapan, M. (2007). A study of Langmuir-Blodgett thin film for organic vapor detection. Materials Letters, 61, 417–420. DOI:10.1016/j.matlet.2006. 04.073. http://dx.doi.org/10.1016/j.matlet.2006.04.07310.1016/j.matlet.2006.04.073Suche in Google Scholar

[8] Das Sarma, B., & Bailar, J. C. (1969). Chemistry of metal complexes with polydentate ligands. Complexes of N-hydroxyethylethylenediamine. Journal of the American Chemical Society, 91, 5958–5963. DOI: 10.1021/ja01050a006. http://dx.doi.org/10.1021/ja01050a00610.1021/ja01050a006Suche in Google Scholar

[9] Elliott, S. R. (1987). A.C. conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics, 36, 135–217. DOI:10.1080/00018738700101971. http://dx.doi.org/10.1080/0001873870010197110.1080/00018738700101971Suche in Google Scholar

[10] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2003). Gaussian 03, Revision A1 [computer software]. Pittsburgh, PA, USA: Gaussian. Suche in Google Scholar

[11] Garzella, C., Comini, E., Tempesti, E., Frigeri, C., & Sberveglieri, G. (2000). TiO2 thin films by a novel sol-gel processing for gas sensor applications. Sensors and Actuators B: Chemical, 68, 189–196. DOI: 10.1016/s0925-4005(00)00428-7. http://dx.doi.org/10.1016/S0925-4005(00)00428-710.1016/S0925-4005(00)00428-7Suche in Google Scholar

[12] Ghosh, A. (1990). Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Physical Review B, 41, 1479–1488. DOI: 10.1103/physrevb.41.1479. http://dx.doi.org/10.1103/PhysRevB.41.147910.1103/PhysRevB.41.1479Suche in Google Scholar PubMed

[13] Gomez, M. T. S. R., Barros, C. M. F., Santana-Marques, M. G. O., & Oliveira, J. A. B. P. (1999). The adsorption of carbon dioxide by tertiary alkanolamines. Canadian Journal Of Chemistry, 77, 401–408. DOI: 10.1139/cjc-77-3-401. http://dx.doi.org/10.1139/v99-02010.1139/cjc-77-3-401Suche in Google Scholar

[14] Hughes, M. N., Underhill, M., & Rutt, K. J. (1972). Complexes of N-hydroxyethylethylenediamine and its condensation product with acetone. Journal of the Chemical Society, Dalton Transactions, 12, 1219–1222. DOI:10.1039/dt9720 001219. http://dx.doi.org/10.1039/dt9720001219Suche in Google Scholar

[15] Long, A. R. (1982). Frequency-dependent loss in amorphous semiconductors. Advances in Physics, 31, 553–637. DOI:10.1080/00018738200101418. http://dx.doi.org/10.1080/0001873820010141810.1080/00018738200101418Suche in Google Scholar

[16] Luo, S. J., Fub, G., Chen, H., & Zhang, Y. Y. (2008). Gas sensing properties and complex impedance analysis of La2O3-added WO3 nanoparticles to VOC gases. Materials Chemistry and Physics, 109, 541–546. DOI: 10.1016/j.matchemphys.2008.01.015. http://dx.doi.org/10.1016/j.matchemphys.2008.01.01510.1016/j.matchemphys.2008.01.015Suche in Google Scholar

[17] Ma’mun, S., & Svendsen, H. F. (2009). Solubility of N2O in aqueous monoethanolamine and 2-(2-aminoethylamino) ethanol solutions from 298 to 343K. Energy Procedia, 1, 837–843. DOI:10.1016/j.egypro.2009.01.111. http://dx.doi.org/10.1016/j.egypro.2009.01.11110.1016/j.egypro.2009.01.111Suche in Google Scholar

[18] Miller, T. G., & Theriot, L. J. (1976). Copper(II) halide complexes with deprotonated N-(2-hydroxyethyl)ethylenediamine. Journal of Inorganic and Nuclear Chemistry, 38, 695–697. DOI:10.1016/0022-1902(76)80339-9. http://dx.doi.org/10.1016/0022-1902(76)80339-910.1016/0022-1902(76)80339-9Suche in Google Scholar

[19] Näsänen, R., Lemmetti, L., Anttila, K., Jokisal, K., & Loytane, K. (1969). Crystal data and other properties of bis(N-(2-hydroxyethyl)ethylenediamine)copper(II)bromide, chloride and sulphate. Suomen Kemistilehti B, 42(2), 124–127. Suche in Google Scholar

[20] Okutan, M., Basaran, E., Bakan, H. I., & Yakuphanoglu, F. (2005). AC conductivity and dielectric properties of Codoped TiO2. Physica B: Condensed Matter, 364, 300–305. DOI:10.1016/j.physb.2005.04.027. http://dx.doi.org/10.1016/j.physb.2005.04.02710.1016/j.physb.2005.04.027Suche in Google Scholar

[21] Pajunen, A., Nasakkala, A., & Pajunen, S. (1978). Bis(N-(2-hydroxyethyl)-ethylenediamine)copper(II) succinate C12H28CuN4O6. Acta Crystallographica Section C: Crystal Structure Communications, 34, 63–66. Suche in Google Scholar

[22] Pajunen, A., & Pajunen, S. (1998). Crystal structure of bis(N-(2-hydroxyehtyl)-ethylenediamine)copper(II) 2-furancarboxylate [Cu(C4H12N2O)2](C5)H3O3)2. In 18 thEuropean Crystallographic Meeting, August 16–20, 1998 (Abstract, C2, 32). Prague, Czech Republic: The Czech and Slovak Crystallographic Association Suche in Google Scholar

[23] Paşaoğlu, H., Karadağ, A., Tezcan, F., & Büyükgüngör, O. (2005). [N-(2-hydroxyethyl)ethylenediamine-κ 3N,N′,O]-cis-bis(isothiocyanato-κN)copper(II). Acta Crystallographica Section C, 61, M93–M94. DOI: 10.1107/s0108270104033 803. Suche in Google Scholar

[24] Patel, V. C., & Curtis, N. F. (1969). A copper(II) complex of 1,15-dihydroxy-7,9,9-trimethyl-3,6,10,13-tetraazapentadeca-6-ene formed by reaction of bis (hydroxyethylethylenediamine) copper(II) with acetone. Journal of the Chemical Society A, 1969, 1607–1608. DOI:10.1039/j19690001607. http://dx.doi.org/10.1039/j1969000160710.1039/j19690001607Suche in Google Scholar

[25] Pisipati, V. G. K. M., Satyanandam, G., & Rao, N. V. S. (1981). The isotropic hyperfine interaction in some aliphatic polyamine copper II complexes. Organic Magnetic Resonance, 17, 235–238. DOI: 10.1002/mrc.1270170402. http://dx.doi.org/10.1002/mrc.127017040210.1002/mrc.1270170402Suche in Google Scholar

[26] Qu, Y., You, Z. L., Liu, Z. D., Zhu, H. L., & Tan, M. Y. (2004). A mononuclear copper(II) compound derived from N-(2-hydroxyethyl)ethylenediamine. Acta Crystallographica Section E, 60, M1187–M1188. DOI:10.1107/s1600536804018227. http://dx.doi.org/10.1107/S160053680401822710.1107/S1600536804018227Suche in Google Scholar

[27] Roldughin, V. I., & Vysotskii, V. V. (2000). Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. Progress in Organic Coatings, 39, 81–100. DOI: 10.1016/s0300-9440(00)00140-5. http://dx.doi.org/10.1016/S0300-9440(00)00140-510.1016/S0300-9440(00)00140-5Suche in Google Scholar

[28] Rella, R., Serra, A., Siciliano, P., Tepore, A., Valli, L., & Zocco, A. (1997). Langmuir-Blodgett multilayers based on copper phthalocyanine as gas sensor materials:? Active layer-gas interaction model and conductivity modulation. Langmuir, 13, 6562–6567. DOI: 10.1021/la961029c. http://dx.doi.org/10.1021/la961029c10.1021/la961029cSuche in Google Scholar

[29] Sberveglieri, G., Comini, E., Faglia, G., Atashbar, M. Z., & Wlodarski, W. (2000). Titanium dioxide thin films prepared for alcohol microsensor applications. Sensors and Actuators B: Chemical, 66, 139–141. DOI: 10.1016/s0925-4005(00)00328-2. http://dx.doi.org/10.1016/S0925-4005(00)00328-210.1016/S0925-4005(00)00328-2Suche in Google Scholar

[30] Striegler, S., & Tewes, E. (2002). Investigation of sugar-binding sites in ternary ligand-copper(II)-carbohydrate complexes. European Journal of Inorganic Chemistry, 487–495. DOI: 10.1002/1099-0682(20022)2002:2〈487::aid-ejic487〉3.0.co; 2-d. Suche in Google Scholar

[31] Tašcıoğlu, S., Kakı, E., & Arı, M. (2008). Synthesis and electrical properties of CuBr2 complexes with 1,10-phenanthroline monohydrate. Chemical Papers, 62, 260–267. DOI: 10.2478/s11696-008-0021-3. http://dx.doi.org/10.2478/s11696-008-0021-310.2478/s11696-008-0021-3Suche in Google Scholar

[32] Tsuchida, R., & Yamada, S. (1955). Direct interaction between copper ions in the molecules of copper acetate and propionate. Nature, 176, 1171. DOI: 10.1038/1761171a0. http://dx.doi.org/10.1038/1761171a010.1038/1761171a0Suche in Google Scholar

[33] Varghese, O. K., Malhotra, L. K., & Sharma, G. L. (1999). High ethanol sensitivity in sol-gel derived SnO2 thin films. Sensors and Actuators B: Chemical, 55, 161–165. DOI: 10.1016/s0925-4005(99)00055-6. http://dx.doi.org/10.1016/S0925-4005(99)00055-610.1016/S0925-4005(99)00055-6Suche in Google Scholar

[34] Wojakowska, A., & Krzyżak, E. (2005). Electrical conductivity of CuBr in the temperature range 500-1050 K. Solid State Ionics, 176, 2711–2716. DOI:10.1016/j.ssi.2005.09.001. http://dx.doi.org/10.1016/j.ssi.2005.09.00110.1016/j.ssi.2005.09.001Suche in Google Scholar

[35] Wang, K., Chen, H., & Shen, W. Z. (2003). AC electrical properties of nanocrystalline silicon thin films. Physica B: Condensed Matter, 336, 369–378. DOI: 10.1016/s0921-4526(03)00313-2. http://dx.doi.org/10.1016/S0921-4526(03)00313-210.1016/S0921-4526(03)00313-2Suche in Google Scholar

[36] Yılmaz, V., Karadağ, A., & Thöne, C. (2002). Metal complexes of saccharin with the N-(2-hydroxyethyl)-ethylenediamine ligand: Synthesis, characterization and spectroscopic examination. crystal structures of trans-is(saccharinato)bis{N-(2-hydroxyethyl)-ethylenediamine} copper (II) and cadmium (II). Journal of Coordination Chemistry, 55, 609–618. DOI: 10.1080/00958970290027471. http://dx.doi.org/10.1080/0095897029002747110.1080/00958970290027471Suche in Google Scholar

[37] Zimmerman, D. N., & Hall, J. L. (1973). Preparation, infrared spectra, visible reflectance spectra, and magnetic moments of copper(II) complexes of N,N′-di(2-hydroxyethyl)ethylenediamine, N-(2-hydroxyethyl)ethylenediamine, and N-(2-hydroxypropyl) ethylenediamine. Inorganic Chemistry, 12, 2616–2620. DOI: 10.1021/ic50129a025. http://dx.doi.org/10.1021/ic50129a02510.1021/ic50129a025Suche in Google Scholar

Published Online: 2013-3-16
Published in Print: 2013-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0362-4/html
Button zum nach oben scrollen