Assessment of the fate of some household micropollutants in urban wastewater treatment plant
-
Laure Pasquini
, Jean-François Munoz
, Nicole Rimlinger , Xavier Dauchy , Xavier France , Marie-Noëlle Pons und Tatiana Görner
Abstract
Everyday domestic activity is a significant source of water pollution. The presence of six household micropollutants in an urban wastewater treatment plant (WWTP) was assessed in wastewater and sludge. A multi-target analytical method was developed for the quantification of ibuprofen, erythromycin, ofloxacin, 4-nonylphenol, 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan), and sucralose. The micropollutants were extracted from the liquid and solid phases and their concentrations were determined by LC-MS/MS. The efficiency of micropollutants’ removal within a conventional activated sludge process was assessed. From 50 % to 90 % of ibuprofen and erythromycin was removed from the wastewater liquid phase. Their removal can be attributed to biological degradation as they were not found adsorbed on the outlet sludge. Ofloxacin and triclosan were removed from the liquid phase with similar efficiencies; however, they were adsorbed on the sludge, so it was not possible to determine their removal mechanism (whether biodegradation or displacement to solid phase/sequestration). Sucralose was not removed from wastewater (3 μg L−1 in inlet and outlet liquid phase) and not adsorbed on the sludge. 4-Nonylphenol concentrations were sometimes higher in the WWTP outlet water; this may relate to the degradation of alkylphenol ethoxylates in the wastewater treatment process. 4-Nonylphenol was always present in the outlet sludge.
[1] Balch, G., & Metcalfe, C. (2006). Developmental effects in Japanese medaka (Oryzias latipes) exposed to nonylphenol ethoxylates and their degradation products. Chemosphere, 62, 1214–1223. DOI: 10.1016/j.chemosphere.2005.02.100. http://dx.doi.org/10.1016/j.chemosphere.2005.02.10010.1016/j.chemosphere.2005.02.100Suche in Google Scholar
[2] Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19, 260–265. DOI: 10.1016/j.copbio.2008.05.006. http://dx.doi.org/10.1016/j.copbio.2008.05.00610.1016/j.copbio.2008.05.006Suche in Google Scholar
[3] Barbosa, J., Bergés, R., Toro, I., & Sanz-Nebot, V. (1997). Protonation equilibria of quinolone antibacterials in acetonitrilewater mobile phases used in LC. Talanta, 44, 1271–1283. DOI: 10.1016/s0039-9140(96)02188-1. http://dx.doi.org/10.1016/S0039-9140(96)02188-110.1016/S0039-9140(96)02188-1Suche in Google Scholar
[4] Bhandari, A., Surampalli, R. Y., Adams, C. D., Champagne, P., Ong, S. K., Tyagi, R. D., & Zhang, T. C (2009). Contaminants of emerging environmental concern. Reston, VA, USA: American Society of Civil Engineers. 10.1061/9780784410141Suche in Google Scholar
[5] Brorström-Lundén, E., Svenson, A., Viktor, T., Woldegiorgis, A., Remberger, M., & Kaj, L. (2008). Measurement of surcalose in the Swedish screening program 2007. Stockholm, Sweden: Swedish Environmental Research Institute. Suche in Google Scholar
[6] Brown, J. N., Paxéus, N., Förlin, L., & Larsson, D. G. J. (2007). Variations in bioconcentration of human pharmaceuticals from sewage effluents into fish blood plasma. Environmental Toxicology and Pharmacology, 24, 267–274. DOI: 10.1016/j.etap.2007.06.005. http://dx.doi.org/10.1016/j.etap.2007.06.00510.1016/j.etap.2007.06.005Suche in Google Scholar PubMed
[7] Cha, J. M., Yang, S., & Carlson, K. H. (2006). Trace determination of beta-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. Journal of Chromatography A, 1115, 46–57. DOI: 10.1016/j.chroma.2006.02.086. http://dx.doi.org/10.1016/j.chroma.2006.02.08610.1016/j.chroma.2006.02.086Suche in Google Scholar PubMed
[8] Clarke, B. O., & Smith, S. R. (2011). Review of “emerging” organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environment International, 37, 226–247. DOI: 10.1016/j.envint.2010.06.004. http://dx.doi.org/10.1016/j.envint.2010.06.00410.1016/j.envint.2010.06.004Suche in Google Scholar PubMed
[9] DiFrancesco, A. M., Chiu, P. C., Standley, L. J., Allen, H. E., & Salvito, D. T. (2004). Dissipation of fragrance materials in sludge-amended soils. Environmental Science & Technology, 38, 194–201. DOI: 10.1021/es034618v. http://dx.doi.org/10.1021/es034618v10.1021/es034618vSuche in Google Scholar PubMed
[10] Environmental Protection Agency (1993). Method 410.4. The determination of chemical oxygen demand by semi-automated colorimetry. EPA-600/4-79-020. Cinncinaty, OH, USA. Suche in Google Scholar
[11] Environmental Protection Agency (2007). Method 1694. Pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS. EPA-821-R-08-002. Cinncinaty, OH, USA. Suche in Google Scholar
[12] Environmental Protection Agency (2008). Reregistration eligibility decision for triclosan. EPA 739-RO-8009. Cinncinaty, OH, USA. Suche in Google Scholar
[13] EU Parliament (2008). Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing. Official Journal of the European Union, L 348, 84–97. Suche in Google Scholar
[14] Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159. DOI: 10.1016/j.aquatox.2005.09.009. http://dx.doi.org/10.1016/j.aquatox.2005.09.00910.1016/j.aquatox.2005.09.009Suche in Google Scholar PubMed
[15] Göbel, A., Thomsen, A., McArdell, C. S., Joss, A., & Giger, W. (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology, 39, 3981–3989. DOI: 10.1021/es048550a. http://dx.doi.org/10.1021/es048550a10.1021/es048550aSuche in Google Scholar PubMed
[16] Grice, H. C., & Goldsmith, L. A. (2000). Sucralose-an overview of the toxicity data. Food and Chemical Toxicology, 38 (Supplement 2), S1–S6. DOI: 10.1016/s0278-6915(00)00023-5. http://dx.doi.org/10.1016/S0278-6915(00)00023-510.1016/S0278-6915(00)00023-5Suche in Google Scholar
[17] Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., Takao, Y., & Arizono, K. (2004). Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquatic Toxicology, 67, 167–179. DOI: 10.1016/j.aquatox.2003.12.005. http://dx.doi.org/10.1016/j.aquatox.2003.12.00510.1016/j.aquatox.2003.12.005Suche in Google Scholar
[18] Jahnke, A., Gandrass, J., & Ruck, W. (2004). Simultaneous determination of alkylphenol ethoxylates and their biotransformation products by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1035, 115–122. DOI: 10.1016/j.chroma.2004.02.060. http://dx.doi.org/10.1016/j.chroma.2004.02.06010.1016/j.chroma.2004.02.060Suche in Google Scholar
[19] Jenner, M. R., & Smithson, A. (1989). Physicochemical properties of the sweetener sucralose. Journal of Food Science, 54, 1646–1649. DOI: 10.1111/j.1365-2621.1989.tb05179.x. http://dx.doi.org/10.1111/j.1365-2621.1989.tb05179.x10.1111/j.1365-2621.1989.tb05179.xSuche in Google Scholar
[20] Kümmerer, K. (2001). Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources — A review. Chemosphere, 45, 957–969. DOI: 10.1016/s0045-6535(01)00144-8. http://dx.doi.org/10.1016/S0045-6535(01)00144-810.1016/S0045-6535(01)00144-8Suche in Google Scholar
[21] Le ministre d’Etat, ministre de l’écologie (2007). Arręté du 22 juin 2007 relatif à la collecte, au transport et au traitement des eaux usées des agglomérations d’assainissement ainsi qu’à la surveillance de leur fonctionnement et de leur efficacité, et aux dispositifs d’assainissement non collectifs recevant une chrage brute de pollution organique supérieure à 1,2 kg/j de DBO5. NOR: DEVO0754085A. Paris, France. (in French) Suche in Google Scholar
[22] Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science & Technology, 44, 3468–3473. DOI: 10.1021/es903490h. http://dx.doi.org/10.1021/es903490h10.1021/es903490hSuche in Google Scholar PubMed
[23] Lillenberg, M., Yurchenko, S., Kipper, K., Herodes, K., Pihl, V., Sepp, K., Löhmus, R., & Nei, L. (2009). Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry. Journal of Chromatography A, 1216, 5949–5954. DOI: 10.1016/j.chroma.2009.06.029. http://dx.doi.org/10.1016/j.chroma.2009.06.02910.1016/j.chroma.2009.06.029Suche in Google Scholar PubMed
[24] Lindberg, R. H., Olofsson, U., Rendahl, P., Johansson, M. I., Tysklind, M., & Andersson, B. A. V. (2006). Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environmental Science & Technology, 40, 1042–1048. DOI: 10.1021/es0516211. http://dx.doi.org/10.1021/es051621110.1021/es0516211Suche in Google Scholar PubMed
[25] Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P. A., Müller, M. D., & Buser, H. R. (2002). Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environmental Science & Technology, 36, 2322–2329. DOI: 10.1021/es0114254. http://dx.doi.org/10.1021/es011425410.1021/es0114254Suche in Google Scholar PubMed
[26] Liu, F., Ying, G. G., Yang, L. H., & Zhou, Q. X. (2009). Terrestrial ecotoxicological effects of the antimicrobial agent triclosan. Ecotoxicology and Environmental Safety, 72, 86–92. DOI: 10.1016/j.ecoenv.2008.06.009. http://dx.doi.org/10.1016/j.ecoenv.2008.06.00910.1016/j.ecoenv.2008.06.009Suche in Google Scholar PubMed
[27] Loos, R., Hanke, G., Umlauf, G., & Eisenreich, S. J. (2007). LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere, 66, 690–699. DOI: 10.1016/j.chemosphere.2006.07.060. http://dx.doi.org/10.1016/j.chemosphere.2006.07.06010.1016/j.chemosphere.2006.07.060Suche in Google Scholar
[28] Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution, 110, 375–391. DOI: 10.1016/s0269-7491(00)00162-7. http://dx.doi.org/10.1016/S0269-7491(00)00162-710.1016/S0269-7491(00)00162-7Suche in Google Scholar
[29] McFarland, J. W., Berger, C. M., Froshauer, S. A., Hayashi, S. F., Hecker, S. J., Jaynes, B. H., Jefson, M. R., Kamicker, B. J., Lipinski, C. A., Lundy, K. M., Reese, C. P., & Vu, C. B. (1997). Quantitative structure-activity relationships among macrolide antibacterial agents: In vitro and in vivo potency against Pasteurella multocida. Journal of Medicinal Chemistry, 40, 1340–1346. DOI: 10.1021/jm960436i. http://dx.doi.org/10.1021/jm960436i10.1021/jm960436iSuche in Google Scholar PubMed
[30] Meesters, R. J. W., & Schröder, H. F. (2002). Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge. Analytical Chemistry, 74, 3566–3574. DOI: 10.1021/ac011258q. http://dx.doi.org/10.1021/ac011258q10.1021/ac011258qSuche in Google Scholar PubMed
[31] Picó, Y., & Andreu, V. (2007). Fluoroquinolones in soil-risks and challenges. Analytical and Bioanalytical Chemistry, 387, 1287–1299. DOI: 10.1007/s00216-006-0843-1. http://dx.doi.org/10.1007/s00216-006-0843-110.1007/s00216-006-0843-1Suche in Google Scholar PubMed
[32] Qiang, Z., & Adams, C. (2004). Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Research, 38, 2874–2890. DOI: 10.1016/j.watres.2004.03.017. http://dx.doi.org/10.1016/j.watres.2004.03.01710.1016/j.watres.2004.03.017Suche in Google Scholar PubMed
[33] Radjenović, J., Petrović, M., & Barceló, D. (2009a). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43, 831–841. DOI: 10.1016/j.watres.2008.11.043. http://dx.doi.org/10.1016/j.watres.2008.11.04310.1016/j.watres.2008.11.043Suche in Google Scholar PubMed
[34] Radjenović, J., Jelić, A., Petrović, M., & Barceló, D. (2009b). Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analytical and Bioanalytical Chemistry, 393, 1685–1695. DOI: 10.1007/s00216-009-2604-4. http://dx.doi.org/10.1007/s00216-009-2604-410.1007/s00216-009-2604-4Suche in Google Scholar PubMed
[35] Richardson, S. D. (2010). Environmental mass spectrometry: Emerging contaminants and current issues. Analytical Chemistry, 82, 4742–4774. DOI: 10.1021/ac101102d. http://dx.doi.org/10.1021/ac101102d10.1021/ac101102dSuche in Google Scholar PubMed
[36] Ruel, S. M., Choubert, J. M., Esperanza, M., Miège, C., Madrigal, P. N., Budzinski, H., Le Ménach, K., Lazarova, M., & Coquery, M. (2011). On-site evaluation of the removal of 100 micro-pollutants through advanced wastewater treatment processes for reuse applications. Water Science and Technology, 63, 2486–2497. DOI: 10.2166/wst.2011.470. http://dx.doi.org/10.2166/wst.2011.47010.2166/wst.2011.470Suche in Google Scholar PubMed
[37] Scheurer, M., Brauch, H. J., & Lange, F. T. (2009). Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Analytical and Bioanalytical Chemistry, 394, 1585–1594. DOI: 10.1007/s00216-009-2881-y. http://dx.doi.org/10.1007/s00216-009-2881-y10.1007/s00216-009-2881-ySuche in Google Scholar
[38] Singer, H., Müller, S., Tixier, C., & Pillonel, L. (2002). Triclosan: Occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments. Environmental Science & Technology, 36, 4998–5004. DOI: 10.1021/es025750i. http://dx.doi.org/10.1021/es025750i10.1021/es025750iSuche in Google Scholar
[39] Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34, 1033–1049. DOI: 10.1016/j.envint.2008.01.004. http://dx.doi.org/10.1016/j.envint.2008.01.00410.1016/j.envint.2008.01.004Suche in Google Scholar
[40] Stephenson, B. C., Rangel-Yagui, C. O., Pessoa, A., Jr., Tavares, L. C., Beers, K., & Blankschtein, D. (2006). Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media. Langmuir, 22, 1514–1525. DOI: 10.1021/la052530k. http://dx.doi.org/10.1021/la052530k10.1021/la052530kSuche in Google Scholar
[41] Stuer-Lauridsen, F., Birkved, M., Hansen, L. P., Holten Lützhøft, H. C., & Halling-Sørensen, B. (2000). Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere, 40, 783–793. DOI: 10.1016/s0045-6535(99)00453-1. http://dx.doi.org/10.1016/S0045-6535(99)00453-110.1016/S0045-6535(99)00453-1Suche in Google Scholar
[42] Suarez, S., Lema, J. M., & Omil, F. (2010). Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, 3214–3224. DOI: 10.1016/j.watres.2010.02.040. http://dx.doi.org/10.1016/j.watres.2010.02.04010.1016/j.watres.2010.02.040Suche in Google Scholar PubMed
[43] Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science & Technology, 35, 3397–3406. DOI: 10.1021/es0003021. http://dx.doi.org/10.1021/es000302110.1021/es0003021Suche in Google Scholar PubMed
[44] Vazquez-Duhalt, R., Marquez-Rocha, F., Ponce, E., Licea, A. F., & Viana, M. T. (2005). Nonylphenol, an integrated vision of a pollutant. Applied Ecology and Environmental Research, 4, 1–25. Suche in Google Scholar
[45] Vega Morales, T., Torres Padrón, M. E., Sosa Ferrera, Z., & Santana Rodríguez, J. J. (2009). Determination of alkylphenol ethoxylates and their degradation products in liquid and solid samples. Tr-Ac Trends in Analytical Chemistry, 28, 1186–1200. DOI: 10.1016/j.trac.2009.07.011. http://dx.doi.org/10.1016/j.trac.2009.07.01110.1016/j.trac.2009.07.011Suche in Google Scholar
[46] Völgyi, G., Ruiz, R., Box, K., Comer, J., Bosch, E., & Takács-Novák, K. (2007). Potentiometric and spectrophotometric pKa determination of water-insoluble compounds: Validation study in a new cosolvent system. Analytica Chimica Acta, 583, 418–428. DOI: 10.1016/j.aca.2006.10.015. http://dx.doi.org/10.1016/j.aca.2006.10.01510.1016/j.aca.2006.10.015Suche in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Enzymatic synthesis of kojic acid esters and their potential industrial applications
- KI-catalysed synthesis of 4-methylcatechol dimethylacetate and fragrant compound Calone 1951®
- Sequestration of supercritical CO2 by mercury oxide
- Assessment of the fate of some household micropollutants in urban wastewater treatment plant
- Synthesis in water-free DMF, characterization, electrical, and gas sensing properties of bis[2-(2-aminoethylamino)ethanol]copper(II) dibromide
- Mechanism of α-acetyl-γ-butyrolactone synthesis
- Spirocyclisation of phytoalexin 1-methoxybrassinin in the presence of Grignard reagents
- Synthesis of new aryl(hetaryl)-substituted tandospirone analogues with potential anxiolytic activity via reductive Heck type hydroarylations
- Methyl-2-arylidene hydrazinecarbodithioates: synthesis and biological activity
- Degradation products of proguanil — 4-chloroaniline and related components with regard to genotoxicity
- In situ bioconversion of compactin to pravastatin by Actinomadura species in fermentation broth of Penicillium citrinum
- Mineral element content in prized matsutake mushroom (Tricholoma matsutake) collected in China
Artikel in diesem Heft
- Enzymatic synthesis of kojic acid esters and their potential industrial applications
- KI-catalysed synthesis of 4-methylcatechol dimethylacetate and fragrant compound Calone 1951®
- Sequestration of supercritical CO2 by mercury oxide
- Assessment of the fate of some household micropollutants in urban wastewater treatment plant
- Synthesis in water-free DMF, characterization, electrical, and gas sensing properties of bis[2-(2-aminoethylamino)ethanol]copper(II) dibromide
- Mechanism of α-acetyl-γ-butyrolactone synthesis
- Spirocyclisation of phytoalexin 1-methoxybrassinin in the presence of Grignard reagents
- Synthesis of new aryl(hetaryl)-substituted tandospirone analogues with potential anxiolytic activity via reductive Heck type hydroarylations
- Methyl-2-arylidene hydrazinecarbodithioates: synthesis and biological activity
- Degradation products of proguanil — 4-chloroaniline and related components with regard to genotoxicity
- In situ bioconversion of compactin to pravastatin by Actinomadura species in fermentation broth of Penicillium citrinum
- Mineral element content in prized matsutake mushroom (Tricholoma matsutake) collected in China