Startseite Sequestration of supercritical CO2 by mercury oxide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sequestration of supercritical CO2 by mercury oxide

  • Kledi Xhaxhiu EMAIL logo , Erisa Saraçi und Klaus Bente
Veröffentlicht/Copyright: 16. März 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

HgCO3·2HgO (mercury oxide carbonate), along with partly unreacted reactants, was obtained by exploring the behaviour of the Hg2Cl2/HgO binary system in supercritical CO2 (scCO2) at 200°C, 22000 kPa in the presence and absence of water, using a self-made laboratory-scale system. The reaction of pure HgO with scCO2 aimed at the synthesis of HgCO3 (mercury carbonate), also yielded the same product. Meanwhile, with a small amount of water present in the Hg2Cl2/HgO-scCO2 system, at 200°C, 22000 kPa, the mineral terlinguaite (Hg4O2Cl2) was obtained instead of mercury oxide carbonate. Repeating this reaction under the same conditions, but in the absence of CO2, again resulted in the synthesis of terlinguaite, leading to the assumption that the scCO2 had no influence on the synthesis of terlinguaite. This study reveals a new moisture-free laboratory method and conditions for the permanent fixation of CO2 by HgO. This method bears two benefits: 1) it can be introduced to reduce the Hg content in flue gas and fly ash emitted from coal-burning power plants and municipal waste incinerators; 2) it can contribute to CO2 mineralisation in montroydite (HgO) geological formations as mercury oxide carbonate.

[1] Aurivillius, K., & Folkmarson, L. (1968). The crystal structure of terlinguaite Hg4O2Cl2. Acta Chemica Scandinavica, 22, 2529–2540. DOI: 10.3891/acta.chem.scand.22-2529. http://dx.doi.org/10.3891/acta.chem.scand.22-252910.3891/acta.chem.scand.22-2529Suche in Google Scholar

[2] Bhattacharyya, P., & Reddy, K. J. (2012). Effect of flue gas treatment on the solubility and fractionation of different metals in fly ash of powder river basin coal. Water, Air, and Soil Pollution, 223, 4169–4181. DOI: 10.1007/s11270-012-1182-9. http://dx.doi.org/10.1007/s11270-012-1182-910.1007/s11270-012-1182-9Suche in Google Scholar

[3] Bilinski, H., Markovič, M., & Gessner, M. (1980). Solubility and equilibrium constants of mercury(II) in carbonate solutions (25°C, I = 0.5 mol dm−3). Inorganic Chemistry, 19, 3440–3443. DOI: 10.1021/ic50213a045. http://dx.doi.org/10.1021/ic50213a04510.1021/ic50213a045Suche in Google Scholar

[4] Brodersen, K., Göbel, G., & Liehr, G. (1989). Terlinguait Hg4O2Cl2 — ein Mineral mit ungewöhnlichen Hg3-Baueinheiten. Zeitschrift für Anorganische und Allgemeine Chemie, 575, 145–153. DOI: 10.1002/zaac.19895750118. (in German) http://dx.doi.org/10.1002/zaac.1989575011810.1002/zaac.19895750118Suche in Google Scholar

[5] Charles, D. (2009). Stimulus gives DOE billions for carboncapture projects. Science, 323, 1158. DOI: 10.1126/science.323.5918.1158. http://dx.doi.org/10.1126/science.323.5918.115810.1126/science.323.5918.1158Suche in Google Scholar PubMed

[6] Dellantonio, A., Walter, J. F., Repmann, F., & Wenzel, W. W. (2010). Disposal of coal combustion residues in terrestrial systems: Contamination and risk management. Journal of Environmental Quality, 39, 761–775. DOI:10.2134/jeq2009.0068. http://dx.doi.org/10.2134/jeq2009.006810.2134/jeq2009.0068Suche in Google Scholar PubMed

[7] Doiwa, A., & Tomanek, A. (1964). Die Bildung von Cadmiumcarbonat und Cadmiumsulfit aus Cadmiumoxid. Zeitschrift für Anorganische und Allgemeine Chemie, 334, 12–14. DOI: 10.1002/zaac.19643340103. (in German) http://dx.doi.org/10.1002/zaac.1964334010310.1002/zaac.19643340103Suche in Google Scholar

[8] Ehrhardt, H., Seidel, H., & Schweer, H. (1980). Hochdrucksynthesen einiger Carbonate mit überkritischem CO2. Zeitschrift für Anorganische und Allgemeine Chemie, 462, 185–198. DOI: 10.1002/zaac.19804620121. (in German) http://dx.doi.org/10.1002/zaac.1980462012110.1002/zaac.19804620121Suche in Google Scholar

[9] Frost, R. L., Čejka, J., Ayoko, G. A., & Dickfos, M. J. (2008a). Raman spectroscopic study of the uranyl carbonate mineral voglite. Journal of Raman Spectroscopy, 39, 374–379. DOI:10.1002/jrs.1829. http://dx.doi.org/10.1002/jrs.182910.1002/jrs.1829Suche in Google Scholar

[10] Frost, R. L., Martens, W. N., Wain, D. L., & Hales, M. C. (2008b). Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70, 1120–1126. DOI:10.1016/j.saa.2007.10.027. http://dx.doi.org/10.1016/j.saa.2007.10.02710.1016/j.saa.2007.10.027Suche in Google Scholar PubMed

[11] Goff, F., Guthrie, G., Counce, D., Kluk, E., Bergfeld, D., & Snow, M. (1997). Preliminary investigations on the carbon dioxide sequestering potential of ultramafic rocks. Report LA-13328-MS. Los Alamos, New Mexico, USA: Los Alamos National Laboratory. http://dx.doi.org/10.2172/56323310.2172/563233Suche in Google Scholar

[12] Hillebrand, W. F., & Schaller, W. T. (1909). The mercury minerals from Terlingua, Texas. U.S. Geological Survey Bulletin 405 (pp. 28). Washington, DC, USA: U.S. Governmental Printing Office. Suche in Google Scholar

[13] Kröcher, O., Köppel, R. A., & Baiker, A. (1996). Sol-gel derived hybrid materials as heterogeneous catalysis for the synthesis of N,N-dimethylformaminde from supercritical carbon dioxide. Chemical Communications, 1996, 1497–1498. DOI: 10.1039/cc9960001497. http://dx.doi.org/10.1039/cc996000149710.1039/CC9960001497Suche in Google Scholar

[14] Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., Jr., & Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153–1170. DOI: 10.1016/0360-5442(95)00071-n. http://dx.doi.org/10.1016/0360-5442(95)00071-N10.1016/0360-5442(95)00071-NSuche in Google Scholar

[15] Liu, J., Zhang, R., Li, H., Han, B., Liu, Z., Jiang, T., He, J., Zhang, X., & Yang, G. (2002). How does magnetic field affect polymerisation in supercrtitical fluids? Study of radical polymerization in supercritical CO2. New Journal of Chemistry, 26, 958–961. DOI: 10.1039/b201279k. http://dx.doi.org/10.1039/b201279k10.1039/b201279kSuche in Google Scholar

[16] López Alonso, M., Benedito, J. L., Miranda, M., Fernández, J. A., Castillo, C., Hernández, J., & Shore, R. F. (2003). Largescale spatial variation in mercury concentrations in cattle in NW Spain. Environmental Pollution, 125, 173–181. DOI: 10.1016/s0269-7491(03)00073-3. http://dx.doi.org/10.1016/S0269-7491(03)00073-310.1016/S0269-7491(03)00073-3Suche in Google Scholar

[17] Lozano, P., De Diego, T., Carrié, D., Vaultier, M., & Iborra, J. L. (2004). Synthesis of glycidyl esters catalyzed by lipases in ionic liquids and supercritical carbon dioxide. Journal of Molecular Catalysis A: Chemical, 214, 113–119. DOI:10.1016/j.molcata.2003.09.034. http://dx.doi.org/10.1016/j.molcata.2003.09.03410.1016/j.molcata.2003.09.034Suche in Google Scholar

[18] O’Connor, W. K., Dahlin, D. C., Walters, R. P., & Turner, P. C. (1999). Carbon dioxide sequestration by ex-situ mineral carbonation. In Proceedings of the Second AMUI Dixy Lee Ray Symposium, August 29–September 2, 1999. Washington, DC, USA: American Society of Mechanical Engineers. Suche in Google Scholar

[19] O’Connor, W. K., Dahlin, D. C., Nilsen, D. N., & Walters, R. P. (2000). Carbon dioxide sequestration by direct mineral carbonation with carbonic acid. In Proceedings of the 25th International Technical Conference on Coal Utilization and Fuel System, March 6–9, 2000. Clearwater, FL, USA: Coal Technology Association. Suche in Google Scholar

[20] Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–72. DOI: 10.1126/science.1100103. http://dx.doi.org/10.1126/science.110010310.1126/science.1100103Suche in Google Scholar PubMed

[21] Powell, K. J., Brown, P. L., Byrne, R. H., Gajda, T., Hefter, G., Sjöberg, S., & Wanner, H. (2005). Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+-Cl−, OH−, CO 32−, SO 42−, and PO 43− aqueous systems (IUPAC Technical Report). Pure and Applied Chemistry, 77, 739–800. DOI: 10.1351/pac200577040739. http://dx.doi.org/10.1351/pac20057704073910.1351/pac200577040739Suche in Google Scholar

[22] Pervukhina, N. V., Romanenko, G. V., Borisov, S. V., Magarill, S. A., & Palchik, N. A. (1999). Crystal chemistry of mercury(I) and mercury(I, II) minerals. Journal of Structural Chemistry, 40, 461–476. DOI: 10.1007/bf02700646. http://dx.doi.org/10.1007/BF0270064610.1007/BF02700646Suche in Google Scholar

[23] Rabenau, A. (1985). Die Rolle der Hydrothermalsynthese in der prärativen Chemie. Angewandte Chemie, 97, 1017–1032. DOI: 10.1002/ange.19850971205. (in German) http://dx.doi.org/10.1002/ange.1985097120510.1002/ange.19850971205Suche in Google Scholar

[24] Reddy, K. J., Lindsay, W. L., Boyle, F. W., Jr., & Redente, E. F. (1986). Solubility relationships and mineral transformations associated with recarbonation of retorted shales. Journal of Environmental Quality, 15, 129–133. DOI: 10.2134/jeq1986.00472425001500020008x. http://dx.doi.org/10.2134/jeq1986.00472425001500020008x10.2134/jeq1986.00472425001500020008xSuche in Google Scholar

[25] Reddy, K. J., Drever, J. I., & Hasfurther, V. R. (1991). Effects of a CO2 pressure process on the solubilities of major and trace elements in oil shale solid wastes. Environmental Science and Technology, 25, 1466–1469. DOI: 10.1021/es00020a016. http://dx.doi.org/10.1021/es00020a01610.1021/es00020a016Suche in Google Scholar

[26] Shlyapnikov, D. S., & Stern, E. K. (1979). Solubility of cadmium and mercury oxides in sodium chloride solutions at elevated carbon dioxide pressures. Doklady Akademii Nauk SSSR, 249, 457–466. Suche in Google Scholar

[27] Siddique, R. (2010). Utilization of coal combustion by-products in sustainable construction materials. Resources, Conservation and Recycling, 54, 1060–1066. DOI: 10.1016/j.resconrec.2010.06.011. http://dx.doi.org/10.1016/j.resconrec.2010.06.01110.1016/j.resconrec.2010.06.011Suche in Google Scholar

[28] Sushil, S., & Batra, V. S. (2006). Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85, 2676–2679. DOI:10.1016/j.fuel.2006.04.031. http://dx.doi.org/10.1016/j.fuel.2006.04.03110.1016/j.fuel.2006.04.031Suche in Google Scholar

[29] Turgut, P. (2012). Manufacturing of building bricks without Portland cement. Journal of Cleaner Production, 37, 361–367. DOI:10.1016/j.jclepro.2012.07.047. http://dx.doi.org/10.1016/j.jclepro.2012.07.04710.1016/j.jclepro.2012.07.047Suche in Google Scholar

[30] Twardowska, I., & Szczepanska, J. (2002). Solid waste: terminological and long-term environmental risk assessment problems exemplified in a power plant fly ash study. The Science of the Total Environment, 285, 29–51. DOI: 10.1016/s0048-9697(01)00893-2. http://dx.doi.org/10.1016/S0048-9697(01)00893-210.1016/S0048-9697(01)00893-2Suche in Google Scholar

[31] van Velzen, D., Langenkamp, H., & Herb, G. (2002). Review: Mercury in waste incineration. Waste Management and Research, 20, 556–568. DOI: 10.1177/0734242x0202000610. http://dx.doi.org/10.1177/0734242X020200061010.1177/0734242X0202000610Suche in Google Scholar PubMed

[32] Vicente, A. B., Jordán, M. M., Sanfeliu, T., Sánchez, A., & Esteban, M. D. (2012). Air pollution prediction models of particles, As, Cd, Ni and Pb in a highly industrialized area in Castellón (NE, Spain). Environmental Earth Sciences, 66, 879–88 DOI: 10.1007/s12665-011-1298-z. http://dx.doi.org/10.1007/s12665-011-1298-z10.1007/s12665-011-1298-zSuche in Google Scholar

[33] Webb, P. B., & Cole-Hamilton, D. J. (2004). Continuous flow homogeneous catalysis using supercritical fluids. Chemical Communications, 2004, 612–613. DOI: 10.1039/b316311c. http://dx.doi.org/10.1039/b316311c10.1039/b316311cSuche in Google Scholar PubMed

[34] Wilke, F. D. H., Vásquez, M., Wiersberg, T., Naumann, R., & Erzinger, J. (2012). On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers: An experimental geochemical approach. Applied Geochemistry, 27, 1615–1622. DOI:10.1016/j.apgeochem.2012.04.012. http://dx.doi.org/10.1016/j.apgeochem.2012.04.01210.1016/j.apgeochem.2012.04.012Suche in Google Scholar

[35] Xhaxhiu, K. (2005). The use of supercritical carbon dioxide in solid state chemistry and basic structural investigations with chalcogenide halides of the third main group. Ph.D. thesis, University of Siegen, Siegen, Germany. Suche in Google Scholar

[36] Xhaxhiu, K., Como, A., & Kota, T. (2012a). Syntheses of inorganic species in supercritical CO2. How feasible are they? Journal of Environmental Protection and Ecology, 13, 144–154. Suche in Google Scholar

[37] Xhaxhiu, K., Mele, A., Memo, A., Seiti, B., Kota, T., & Dule, K. (2012b). Syntheses of rubidium- and cesium triiodides in supercritical carbon dioxide. Asian Journal of Chemistry, 24, 3879–3883. Suche in Google Scholar

[38] Yanagihara, N., Vemulapalli, K., & Fernando, Q. (1991a). Synthesis of lanthanide carbonates using supercritical carbon dioxide. Kidorui, 18, 136–137. Suche in Google Scholar

[39] Yanagihara, N., Vemulapalli, K., Fernando, Q., & Dyke, J. T. (1991b). Synthesis of lanthanide carbonates. Journal of the Less-Common Metals, 167, 223–232. DOI: 10.1016/0022-5088(91)90277-b. http://dx.doi.org/10.1016/0022-5088(91)90277-B10.1016/0022-5088(91)90277-BSuche in Google Scholar

Published Online: 2013-3-16
Published in Print: 2013-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0356-2/html
Button zum nach oben scrollen