Startseite One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer

  • Farook Adam EMAIL logo , Muazu Batagarawa , Kasim Hello und Salih Al-Juaid
Veröffentlicht/Copyright: 27. Juli 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A one-pot method was employed to immobilize sulfonic acid onto silica obtained from rice husk ash using 3-(mercaptopropyl)trimethoxysilane to form a solid catalyst denoted as RHASO3H. BET measurements of the catalyst showed the surface area to be 340 m2 g−1 with the average pore volume of 0.24 mL g−1 and the pore diameter of 2.9 nm. Acidity test of cation exchange capacity and pyridine adsorption studies revealed the presence of Brønsted acid sites on the catalyst surface. The catalyst was used in the acetalization reaction of glycerol with benzaldehyde. Under optimized conditions, the reaction showed the maximum conversion of 78 % after 8 h with 67 % selectivity towards the five membered ring isomer. Variation in the glycerol concentration had a significant effect on the reactants conversion. A single crystal X-ray study of one of the products proved the existence of a unique trimer formed by hydrogen bonding by the six-membered cis-isomer. The catalyst was several times recycled without any loss of its catalytic activity.

[1] Adam, F., Balakrishnan, S., & Wong, P. L, (2006). Rice husk ash silica as a support material for ruthenium based heterogenous catalyst. Journal of Physical Science, 17, 1–13. Suche in Google Scholar

[2] Adam, F. & Chua, J. H. (2004). The adsorption of palmitic acid on rice husk ash chemically modified with Al(III) ion using the sol-gel technique. Journal of Colloid and Interface Science, 280, 55–61. DOI: 10.1016/j.jcis.2004.07.006. http://dx.doi.org/10.1016/j.jcis.2004.07.00610.1016/j.jcis.2004.07.006Suche in Google Scholar

[3] Adam, F., Hello, K. M., & Ali, T. H. (2011a). Solvent free liquid-phase alkylation of phenol over solid sulfanilic acid catalyst. Applied Catalysis A: General, 399, 42–49. DOI: 10.1016/j.apcata.2011.03.039. http://dx.doi.org/10.1016/j.apcata.2011.03.03910.1016/j.apcata.2011.03.039Suche in Google Scholar

[4] Adam, F., Hello, K. M., & Ben Aisha, M. R. (2011b). The synthesis of heterogeneous 7-amino-1-naphthalene sulfonic acid immobilized silica nano particles and its catalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 42, 843–851. DOI: 10.1016/j.jtice.2011.02.002. http://dx.doi.org/10.1016/j.jtice.2011.02.00210.1016/j.jtice.2011.02.002Suche in Google Scholar

[5] Adam, F., Hello, K. M., & Osman, H. (2010). Synthesis of mesoporous silica immobilized with 3-[(mercapto or amino) propyl]trialkoxysilane by a simple one-pot reaction. Chinese Journal of Chemistry, 28, 2383–2388. DOI: 10.1002/cjoc.201190008. http://dx.doi.org/10.1002/cjoc.20119000810.1002/cjoc.201190008Suche in Google Scholar

[6] Adam, F., & Ravendran, S. (2000). Saturated fatty acid adsorption by acidi?ed rice hull ash. Journal of the American Oil Chemists’ Society, 77, 437–440. DOI: 10.1007/s11746-000-0070-0. http://dx.doi.org/10.1007/s11746-000-0074-910.1007/s11746-000-0070-0Suche in Google Scholar

[7] Ahmed, A. E., & Adam, F. (2007). Indium incorporated silica from rice husk and its catalytic activity. Microporous and Mesoporous Materials, 103, 284–295. DOI: 10.1016/j.micromeso.2007.01.055. http://dx.doi.org/10.1016/j.micromeso.2007.01.05510.1016/j.micromeso.2007.01.055Suche in Google Scholar

[8] Barzetti, T., Selli, E., Moscotti, D., & Forni, L., (1996). Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. Journal of the Chemical Society, Faraday Transactions, 92, 1401–1407. DOI: 10.1039/ft9969201401. http://dx.doi.org/10.1039/ft996920140110.1039/ft9969201401Suche in Google Scholar

[9] Behr, A., Eilting, J., Irawadi, K., Leschinski, J., & Lindner, F. (2008). Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chemistry, 10, 13–30. DOI: 10.1039/b710561d. http://dx.doi.org/10.1039/b710561d10.1039/B710561DSuche in Google Scholar

[10] Bossaert, W. D., De Vos, D. E., Van Rhijn, W. M., Bullen, J., Grobet, P. J., & Jacobs, P. A. (1999). Mesoporous sulfonic acids as selective heterogeneous catalysts for the synthesis of monoglycerides. Journal of Catalysis, 182, 156–164. DOI: 10.1006/jcat.1998.2353. http://dx.doi.org/10.1006/jcat.1998.235310.1006/jcat.1998.2353Suche in Google Scholar

[11] Cataldo, M., Nieddu, E. Gavagnin, R., Pinna, F., & Strukul, G. (1999). Hydroxy complexes of palladium(II) and platinum(II) as catalysts for the acetalization of aldehydes and ketones. Journal of Molecular Catalysis A: Chemical, 142, 305–316. DOI: 10.1016/s1381-1169(98)00299-4. http://dx.doi.org/10.1016/S1381-1169(98)00299-410.1016/S1381-1169(98)00299-4Suche in Google Scholar

[12] Climent, M. J., Velty, A., & Corma, A. (2002). Design of a solid catalyst for the synthesis of a molecule with blossom orange scent. Green Chemistry, 4, 565–569. DOI: 10.1039/b207506g. http://dx.doi.org/10.1039/b207506g10.1039/b207506gSuche in Google Scholar

[13] da Silva C. X. A., Gonçalves, V. L. C., & Mota, C. J. A. (2009). Water-tolerant zeolite catalyst for the acetalisation of glycerol. Green Chemistry, 11, 38–41. DOI: 10.1039/b813564a. http://dx.doi.org/10.1039/b813564a10.1039/B813564ASuche in Google Scholar

[14] Deutsch, J., Martin, A., & Lieske, H. (2007). Investigations on heterogeneously catalysed condensations of glycerol to cyclic acetals. Journal of Catalysis, 245, 428–435. DOI: 10.1016/j.jcat.2006.11.006. http://dx.doi.org/10.1016/j.jcat.2006.11.00610.1016/j.jcat.2006.11.006Suche in Google Scholar

[15] Eskandar, K., Zolfigol, M. A., Koukabi, N., & Shirmadi-Shaghasemi, B. (2011). A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions. Chemical Papers, 65, 898–902. DOI: 10.2478/s11696-011-0087-1. http://dx.doi.org/10.2478/s11696-011-0087-110.2478/s11696-011-0087-1Suche in Google Scholar

[16] Ferreira, P., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2010). Valorisation of glycerol by condensation with acetone over silica-included heteropolyacids. Applied Catalysis B: Environmental, 98, 94–99. DOI: 10.1016/j.apcatb.2010.05.018. http://dx.doi.org/10.1016/j.apcatb.2010.05.01810.1016/j.apcatb.2010.05.018Suche in Google Scholar

[17] Gupta, R., Paul, S., & Gupta, R., (2007). Covalently anchored sulfonic acid onto silica as an efficient and recoverable interphase catalyst for the synthesis of 3,4-dihydropyrimidinones/thiones. Journal of Molecular Catalysis A: Chemical, 266, 50–54. DOI: 10.1016/j.molcata.2006.10.039. http://dx.doi.org/10.1016/j.molcata.2006.10.03910.1016/j.molcata.2006.10.039Suche in Google Scholar

[18] Hamoudi, S., Royer, S., & Kaliaguine, S. (2004). Propyland arene-sulfonic acid functionalized periodic mesoporous organosilicas. Microporous and Mesoporous Materials, 71, 17–25. DOI: 10.1016/j.micromeso.2004.03.009. http://dx.doi.org/10.1016/j.micromeso.2004.03.00910.1016/j.micromeso.2004.03.009Suche in Google Scholar

[19] Hermida, L., Abdullah, A. Z., & Mohamed, A. R. (2008). Mesoporous functionalized acid catalysts and their use as environmentaly friendly catalysts in esterification of glycerols for monoglyceride production. In Proceedings of the International Conference on Environment (ICENV 2008), December 15–17, 2008. Penang, Malaysia: School of Chemical Engineering. Suche in Google Scholar

[20] Karimi, B., & Khalkhali, M. (2005). Solid silica-based sulfonic acid as an efficient and recoverable interphase catalyst for selective tetrahydropyranylation of alcohols and phenols. Journal of Molecular Catalysis A: Chemical, 232, 113–117. DOI: 10.1016/j.molcata.2005.01.028. http://dx.doi.org/10.1016/j.molcata.2005.01.02810.1016/j.molcata.2005.01.028Suche in Google Scholar

[21] Karimi, B., & Khalkhali, M. (2007). Silica functionalized sulfonic acid as a recyclable interphase catalyst for chemoselective thioacetalization of carbonyl compounds in water. Journal of Molecular Catalysis A: Chemical, 271, 75–79. DOI: 10.1016/j.molcata.2007.02.018. http://dx.doi.org/10.1016/j.molcata.2007.02.01810.1016/j.molcata.2007.02.018Suche in Google Scholar

[22] Li, C., Yang, J., Shi, X., Liu, J., & Yang, Q. (2007). Synthesis of SBA-15 type mesoporous organosilicas with diethylenebenzene in the framework and post-synthetic framework modifi-cation. Microporous and Mesoporous Materials, 98, 220–226. DOI: 10.1016/j.micromeso.2006.09.013. http://dx.doi.org/10.1016/j.micromeso.2006.09.01310.1016/j.micromeso.2006.09.013Suche in Google Scholar

[23] Margolese, D., Melero, J. A., Christiansen, S. C., Chmelka, B. F., & Stucky, G. D. (2000). Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chemistry of Materials, 12, 2448–2459. DOI: 10.1021/cm0010304. http://dx.doi.org/10.1021/cm001030410.1021/cm0010304Suche in Google Scholar

[24] Marschall, R., Rathousky, J., & Wark, M. (2007). Ordered functionalized silica materials with high proton conductivity, Chemistry of Materials, 19, 6401–6407. DOI: 10.1021/cm071164i. http://dx.doi.org/10.1021/cm071164i10.1021/cm071164iSuche in Google Scholar

[25] Mendes, N. C. F., Claro, P. R., & Nolasco, M. M. (2011). Effects of hydrogen-bond cooperativity in the vibrational spectra of luminol. Retrieved September 19, 2011 from http://jornadasciceco.web.ua.pt/P90.pdf Suche in Google Scholar

[26] Melero, J. A., van Grieken, R., Morales, G., & Paniagua, M. (2007). Acidic mesoporous silica for the acetylation of glycerol: Synthesis of bioadditives to petrol fuel. Energy & Fuels, 21, 1782–1791. DOI: 10.1021/ef060647q. http://dx.doi.org/10.1021/ef060647q10.1021/ef060647qSuche in Google Scholar

[27] Mizanur Rahman, M., Takafuji, M., & Ihara, H. (2008). Preparation, telomerization, immobilization and application of N-alkyl L-phenylalanine-derived polymerizable organogelator for reversed-phase high-performance liquid chromatography. Jornal of Chromatography A, 1203, 59–66. DOI: 10.1016/j.chroma.2008.07.022. http://dx.doi.org/10.1016/j.chroma.2008.07.02210.1016/j.chroma.2008.07.022Suche in Google Scholar PubMed

[28] Radhika, T., & Sugunan, S. (2006). Structural and catalytic investigation of vanadia supported on ceria promoted with high surface area rice husk silica. Journal of Molecular Catalysis A: Chemical, 250, 169–176. DOI: 10.1016/j.molcata.2006.01.048. http://dx.doi.org/10.1016/j.molcata.2006.01.04810.1016/j.molcata.2006.01.048Suche in Google Scholar

[29] Saleh, M. I., Adam, F., & Rahman, I. A. (1990). Production and characterisation of rice husk ash as a source of pure silica. In R. Othman (Ed.), Seramik Nusantara, Proceedings of the First National Seminar on Ceramic Technology, SERAMIK’ 89 (pp. 261). Penang, Malaysia: Universiti Sains Malaysia. Suche in Google Scholar

[30] Shimizu, K.-i., Hayashi, E., Hamatachi, T., Kodama, T., & Kitayama, Y. (2004). SO3H-functionalized silica for acetalization of carbonyl compounds with methanol and tetrahydropyranylation of alcohols. Tetrahedron Letters, 45, 5135–5138. DOI: 10.1016/j.tetlet.2004.04.186. http://dx.doi.org/10.1016/j.tetlet.2004.04.18610.1016/j.tetlet.2004.04.186Suche in Google Scholar

[31] Thommes, M. (2010). Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik, 82, 1059–1073. DOI: 10.1002/cite.201000064. http://dx.doi.org/10.1002/cite.20100006410.1002/cite.201000064Suche in Google Scholar

[32] Umbarkar, S. B. Kotbagi, T. V., Biradar, A. V., Pasricha, R., Chanale, J., Dongare, M. K., Mamede, A. S., Lancelot, C., & Payen, E. (2009). Acetalization of glycerol using mesoporous MoO3/SiO2 solid acid catalyst. Journal of Molecular Catalysis A: Chemical, 310, 150–158. DOI: 1016/j.molcata.2009.06.010. http://dx.doi.org/10.1016/j.molcata.2009.06.01010.1016/j.molcata.2009.06.010Suche in Google Scholar

[33] Wade, L. G. (2006). Organic chemistry (6th ed.). New York, NY, USA: Pearson/Prentice Hall. Suche in Google Scholar

[34] Wang, X., Cheng, S., Chan, C. C. J., & Chao, C. H. J. (2006). Template-free synthesis of mesoporous phenylsulfonic acid functionalized silica. Microporous and Mesoporous Materials, 96, 321–330. DOI: 10.1016/j.micromeso.2006.07.023. http://dx.doi.org/10.1016/j.micromeso.2006.07.02310.1016/j.micromeso.2006.07.023Suche in Google Scholar

[35] Van Rhijn, W. M., De Vos, D. E., Sels, B. F., & Bossaert, W. D. (1998). Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical Communications, 1998, 317–318. DOI: 10.1039/a707462j. http://dx.doi.org/10.1039/a707462j10.1039/a707462jSuche in Google Scholar

[36] Zhao, X. S., Lu, G. Q., Whittaker, A. K., Millar, G. J., & Zhu, H. Y. (1997). Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA. The Journal of Physical Chemistry B, 101, 6525–6531. DOI: 10.1021/jp971366. http://dx.doi.org/10.1021/jp971366+10.1021/jp971366+Suche in Google Scholar

Published Online: 2012-7-27
Published in Print: 2012-11-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems
  2. Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system
  3. Design simulations for a biogas purification process using aqueous amine solutions
  4. Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator
  5. Trace elements in Variegated Bolete (Suillus variegatus) fungi
  6. N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]
  7. Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions
  8. One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer
  9. Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment
  10. Near-infrared imaging for quantitative analysis of active component in counterfeit dimethomorph using partial least squares regression
  11. Corrosion of titanium diboride in molten FLiNaK(eut)
  12. Domino synthesis of novel series of 4-substituted 5-thioxo-1,2,4-triazolidin-3-one derivatives
  13. Erratum to: “Nguyen Hoang Loc, Nguyen Thanh Giang: Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)”, Chemical Papers 66 (7) 642–648 (2012)
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0203-x/html
Button zum nach oben scrollen