Startseite Antioxidant potential and authenticity of some commercial fruit juices studied by EPR and IRMS
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Antioxidant potential and authenticity of some commercial fruit juices studied by EPR and IRMS

  • Nicoleta Vedeanu EMAIL logo , Dana Magdas , Laura Bolojan und Grigore Damian
Veröffentlicht/Copyright: 11. April 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Antioxidant status of foods, plant, or fruit products is generally characterized by means of spectroscopic methods. Methods like HPLC, UV-VIS, or MS spectroscopy are used to understand the chemical and physical properties of different samples, and also EPR spectroscopy seems to be a valuable tool to characterize antioxidant activity of juice beverages. In this technique, certain antioxidants present in fruit juices interact with free radicals interrupting the chain reaction that can possibly damage essential molecules. Recording the EPR signal decay caused by the reaction with a natural or artificial reducing agent, it is possible to draw conclusions about the antioxidant capability of materials. IRMS is a powerful tool to distinguish between an authentic fruit juice and a juice obtained by concentrate dilution. This technique allows also the detection of commercial C4 cane or corn derived sugar syrups in C3 fruit juices. In the present study, four commercial fruit juices were investigated using stable isotope measurements (oxygen, hydrogen, and carbon) and EPR measurements in order to check the correct labeling in the Romanian markets and to compare antioxidant activity of the studied juices and the reference. It was proven that the number of paramagnetic species decreases in time with different reaction rates and this was correlated with the antioxidant activity of the studied juices. Stable isotope ratio measurements have demonstrated that the fruit juices studied were reconstructed from concentrates with tap water, according to their label.

[1] Bors, W., & Michel, C. (2002). Chemistry of the antioxidant effect of polyphenols. Annals of the New York Academy of Sciences, 957, 57–69. DOI: 10.1111/j.1749-6632.2002.tb02905.x. http://dx.doi.org/10.1111/j.1749-6632.2002.tb02905.x10.1111/j.1749-6632.2002.tb02905.xSuche in Google Scholar

[2] Da Porto, C., Calligaris, S., Celotti, E., & Nicoli, M. C. (2000). Antiradical properties of commercial cognacs assessed by DPPH. test. Journal of Agricultural and Food Chemistry, 48, 4241–4245. DOI: 10.1021/jf000167b. http://dx.doi.org/10.1021/jf000167b10.1021/jf000167bSuche in Google Scholar

[3] Hosu, A., Cimpoiu, C., Miclaus, V., Damian, G., Tarsiche, I., & Pop, N. (2010). Influence of intermittent heating during mac eration on the antioxidant capacity of some grape seeds and skins. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 41–43. Suche in Google Scholar

[4] International Atomic Energy Agency (1968). Vienna Standard Mean Ocean Water. Vienna, Austria. Suche in Google Scholar

[5] International Atomic Energy Agency (1983). Vienna Pee Dee Belemnite. Vienna, Austria. Suche in Google Scholar

[6] Kelly, S. D. (2003). Using stable isotope ratio mass spectrometry in food authentication and traceability. In M. Lees (Ed.), Food authenticity and traceability (Chapter 7, pp. 156–183). Cambridge, UK: Woodhead Publishing. http://dx.doi.org/10.1533/9781855737181.1.15610.1533/9781855737181.1.156Suche in Google Scholar

[7] Koziet, J., Rossmann, A., Martin, G. J., & Johnson, P. (1995). Determination of the oxygen-18 and deuterium content of fruit and vegetable juice water. An European interlaboratory comparison study. Analytica Chimica Acta, 302, 29–37. DOI: 10.1016/0003-2670(94)00424-k. http://dx.doi.org/10.1016/0003-2670(94)00424-K10.1016/0003-2670(94)00424-KSuche in Google Scholar

[8] Li, A. S. W., Cummings, K. B., Roethling, H. P., Buettner, G. R., & Chignell, C. F. (1988). A spin-trapping database implemented on the IBM PC/AT. Journal of Magnetic Resonance, 79, 140–142. Suche in Google Scholar

[9] Ogrinc, N., Bat, K., Košir, I. J., Golob, T., & Kokkinofta, R. (2009). Characterization of commercial Slovenian and Cypriot fruit juices using stable isotopes. Journal of Agricultural and Food Chemistry, 57, 6764–6769. DOI: 10.1021/jf9009944. http://dx.doi.org/10.1021/jf900994410.1021/jf9009944Suche in Google Scholar

[10] O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553–567. DOI: 10.1016/0031-9422(81) 85134-5. http://dx.doi.org/10.1016/0031-9422(81)85134-510.1016/0031-9422(81)85134-5Suche in Google Scholar

[11] O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bio-Science, 38, 328–333. DOI: 10.2307/1310735. 10.2307/1310735Suche in Google Scholar

[12] Petrisor, D., Damian, G., Simon, S., Hosu, A., & Miclaus, V. (2008). Antioxidant activity of some types of white wines and juices investigated by EPR spectroscopy. Modern Physics Letters B, 22, 2689–2698. DOI: 10.1142/s0217984908017175. http://dx.doi.org/10.1142/S021798490801717510.1142/S0217984908017175Suche in Google Scholar

[13] Polovka, M. (2006). EPR spectroscopy: A tool to characterize stability and antioxidant properties of foods. Journal of Food and Nutrition Research, 45, 1–11. Suche in Google Scholar

[14] Polovka, M., Brezová, V., & Staško, A. (2003). Antioxidant properties of tea investigated by EPR spectroscopy. Biophysical Chemistry, 106, 39–56. DOI: 10.1016/s0301-4622(03)00159-5. http://dx.doi.org/10.1016/S0301-4622(03)00159-510.1016/S0301-4622(03)00159-5Suche in Google Scholar

[15] Pupin, A. M., Dennis M. J., Parker, I., Kelly, S., Bigwood, T., & Toledo, M. C. F. (1998). Use of isotopic analyses to determine the authenticity of Brazilian orange juice (Citrus sinensis). Journal of Agricultural and Food Chemistry, 46, 1369–1373. DOI: 10.1021/jf970746p. http://dx.doi.org/10.1021/jf970746p10.1021/jf970746pSuche in Google Scholar

[16] Record, I. R., & Lane, J. M. (2001). Stimulated intestinal digestion of green and black teas. Food Chemistry, 73, 481–486. DOI: 10.1016/s0308-8146(01)00131-5. http://dx.doi.org/10.1016/S0308-8146(01)00131-510.1016/S0308-8146(01)00131-5Suche in Google Scholar

[17] Rossi, M., Giussani, E., Morelli, R., Lo Scalzo, R., Nani, R. C., & Torreggiani, D. (2003). Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Research International, 36, 999–1005. DOI: 10.1016/j.foodres.2003.07.002. http://dx.doi.org/10.1016/j.foodres.2003.07.00210.1016/j.foodres.2003.07.002Suche in Google Scholar

[18] Schmidt, H. L., & Winkler, F. J. (1979). Einige Ursachen der Variationsbreite von δ 13C-Werten bei C3- und C4-Pflanzen. Berichte der Deutschen Botanischen Gesellschaft, 92, 185–191. Suche in Google Scholar

[19] Stanner, S. A., Hughes, J., Kelly, C. N.M., & Buttriss, J. (2004). A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutrition, 7, 407–422. DOI: 10.1079/phn2003543. http://dx.doi.org/10.1079/PHN200354310.1079/PHN2003543Suche in Google Scholar

[20] Tiwari, A. K. (2004). Antioxidants: new generation therapeutic base for treatment of polygenic disorders. Current Science, 86, 1092–1102. Suche in Google Scholar

[21] US Department of Agriculture (2005). USDA national nutrient database for standard reference. Washington, DC, USA: Government Printing Office. Suche in Google Scholar

[22] Vitaglione, P., & Fogliano, V. (2004). Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. Journal of Chromatography B, 802, 189–199. DOI: 10.1016/j.jchromb.2003.09.029. http://dx.doi.org/10.1016/j.jchromb.2003.09.02910.1016/j.jchromb.2003.09.029Suche in Google Scholar PubMed

Published Online: 2012-4-11
Published in Print: 2012-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0115-1/html
Button zum nach oben scrollen