Startseite Lebenswissenschaften Speciation of heavy metals in sewage sludge after mesophilic and thermophilic anaerobic digestion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Speciation of heavy metals in sewage sludge after mesophilic and thermophilic anaerobic digestion

  • Lidia Dąbrowska EMAIL logo
Veröffentlicht/Copyright: 11. April 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Two types of sewage sludge anaerobic digestion were carried out: mesophilic and thermophilic. Metal speciation analysis was performed revealing some changes in the chemical form of the metals during the stabilization process of sludge. After both methane fermentation processes, a comparable level of organic matter distribution was obtained (≈ 40 %). The amount of produced methane during thermophilic and mesophilic digestion was 560 mL of CH4 and 580 mL of CH4 from 1 g of removed organic matter, respectively. Low concentration of heavy metal ions in the liquid phase of sludge was observed. Metal ions precipitated and remained bound throughout the stabilization process. No accumulation of heavy metals in the mobile fractions of sludge (exchangeable and carbonate) was observed for either digestion process. The highest increase of zinc, copper, nickel, cadmium, and chromium concentration was observed in the organic-sulfide fraction, whereas the highest increase of lead was found in the residual fraction.

[1] Alonso, E., Villar, P., Santos, A., & Aparicio, I. (2006). Fractionation of heavy metals in sludge from anaerobic wastewater stabilization ponds in Southern Spain. Waste Management, 26, 1270–1276. DOI: 10.1016/j.wasman.2005.09.020. http://dx.doi.org/10.1016/j.wasman.2005.09.02010.1016/j.wasman.2005.09.020Suche in Google Scholar

[2] Alonso Álvarez, E., Callejón Mochón, M., Jiménez Sánchez, J. C., & Ternero Rodríguez, M. (2002). Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere, 47, 765–775. DOI: 10.1016/s0045-6535(02)00021-8. http://dx.doi.org/10.1016/S0045-6535(02)00021-810.1016/S0045-6535(02)00021-8Suche in Google Scholar

[3] Carballa, M., Omil, F., & Lema, J. M. (2009). Influence of different pretreatments on anaerobically digested sludge characteristics: Suitability for final disposal. Water, Air, & Soil Pollution, 199, 311–321. DOI: 10.1007/s11270-008-9880-z. http://dx.doi.org/10.1007/s11270-008-9880-z10.1007/s11270-008-9880-zSuche in Google Scholar

[4] Chen, M., Li, X., Yang, Q., Zeng, G., Zhang, Y., Liao, D., Liu, J., Hu, J., & Guo, L. (2008). Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China. Journal of Hazardous Materials, 160, 324–329. DOI: 10.1016/j.jhazmat.2008.03.036. http://dx.doi.org/10.1016/j.jhazmat.2008.03.03610.1016/j.jhazmat.2008.03.036Suche in Google Scholar

[5] Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater. Washington, DC, USA: American Public Health Association. Suche in Google Scholar

[6] Dai, J., Chen, L., Zhao, J., & Ma, N. (2006). Characteristic of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge. Journal of Environmental Sciences, 18, 1094–1100. DOI: 10.1016/s1001-0742(06)60045-4. http://dx.doi.org/10.1016/S1001-0742(06)60045-410.1016/S1001-0742(06)60045-4Suche in Google Scholar

[7] Dai, J., Xu, M., Chen, J., Yang, X., & Ke, Z. (2007). PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatments in Beijing, China. Chemosphere, 66, 353–361. DOI: 10.1016/j.chemosphere.2006.04.072. http://dx.doi.org/10.1016/j.chemosphere.2006.04.07210.1016/j.chemosphere.2006.04.072Suche in Google Scholar PubMed

[8] International Organisation for Standardization (1995). Water quality — Evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge — Method by measurement of the biogas production. ISO 11734:1995. Geneva, Switzerland. Suche in Google Scholar

[9] European Committee for Standardization (2000). Characterization of sludges — Determination of trace elements and phosphorus — Aqua regia exctracion methods. EN 13346:2000. Brussels, Belgium. Suche in Google Scholar

[10] Frentiu, T., Ponta, M., Levei, E., & Cordos, E. A. (2009). Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure. Chemical Papers, 63, 239–248. DOI: 10.2478/s11696-008-0102-3. http://dx.doi.org/10.2478/s11696-008-0102-310.2478/s11696-008-0102-3Suche in Google Scholar

[11] Fuentes, A., Lloréns, M., Sáez, J., Aguilar, M. I., Orutño, J. F., & Meseguer, V. F. (2008). Comparative study of six different sludges by sequential speciation of heavy metals. Bioresource Technology, 99, 517–525. DOI: 10.1016/j.biortech.2007.01.025. http://dx.doi.org/10.1016/j.biortech.2007.01.02510.1016/j.biortech.2007.01.025Suche in Google Scholar PubMed

[12] Fuentes, A., Lloréns, M., Sáez, J., Soler, A., Aguilar, M. I., Orutño, J. F., & Meseguer, V. F. (2004). Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere, 54, 1039–1047. DOI: 10.1016/j.chemosphere.2003.10.029. http://dx.doi.org/10.1016/j.chemosphere.2003.10.02910.1016/j.chemosphere.2003.10.029Suche in Google Scholar PubMed

[13] Giller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41, 2031–2037. DOI: 10.1016/j.soilbio.2009.04.026. http://dx.doi.org/10.1016/j.soilbio.2009.04.02610.1016/j.soilbio.2009.04.026Suche in Google Scholar

[14] Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21, 451–467. DOI: 10.1016/s0165-9936(02)00603-9. http://dx.doi.org/10.1016/S0165-9936(02)00603-910.1016/S0165-9936(02)00603-9Suche in Google Scholar

[15] Hanay, O., Hasar, H., Kocer, N. N., & Aslan, S. (2008). Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge. Bulletin of Environmental Contamination Toxicology, 81, 42–46. DOI: 10.1007/s00128-008-9451-4. http://dx.doi.org/10.1007/s00128-008-9451-410.1007/s00128-008-9451-4Suche in Google Scholar

[16] Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G. A., Shah, A. Q., & Baig, J. A. (2009). Speciation of heavy metals in untreated sewage sludge by using microwave assisted sequential extration procedure. Journal of Hazardous Materials, 63, 1157–1164. DOI: 10.1016/j.jhazmat.2008.07.071. http://dx.doi.org/10.1016/j.jhazmat.2008.07.07110.1016/j.jhazmat.2008.07.071Suche in Google Scholar

[17] Lasheen, M. R., & Ammar, N. S. (2009). Assessment of metals speciation in sewage sludge and stabilized sludge from different wastewater treatment plants, Greater Cairo, Egypt. Journal of Hazardous Materials, 164, 740–749. DOI: 10.1016/j.jhazmat.2008.08.068. http://dx.doi.org/10.1016/j.jhazmat.2008.08.06810.1016/j.jhazmat.2008.08.068Suche in Google Scholar

[18] Malina, J. F., Jr., & Pohland, F. G. (1992). Design of anaerobic processes for the treatment of industrial and municipal wastes (Vol. 7). Lancaster, PA, USA: Technomic Publishing Co. Suche in Google Scholar

[19] Mosquera-Losada, M. R., Muñoz-Ferreiro, N., & Riqueiro-RodrÍquez, A. (2010). Agronomic characterisation of different types of sewage sludge: Policy implications. Waste Management, 30, 492–503. DOI: 10.1016/j.wasman.2009.09.021. http://dx.doi.org/10.1016/j.wasman.2009.09.02110.1016/j.wasman.2009.09.021Suche in Google Scholar

[20] Mossop, K. F., & Davidson, C. M. (2003). Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478, 111–118. DOI: 10.1016/s0003-2670(02)01485-x. http://dx.doi.org/10.1016/S0003-2670(02)01485-X10.1016/S0003-2670(02)01485-XSuche in Google Scholar

[21] Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8, 199–216. DOI: 10.1007/s10311-010-0297-8. http://dx.doi.org/10.1007/s10311-010-0297-810.1007/s10311-010-0297-8Suche in Google Scholar

[22] Nges, I. A., & Liu, J. (2010). Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renewable Energy, 35, 2200–2206. DOI: 10.1016/j.renene.2010.02.022. http://dx.doi.org/10.1016/j.renene.2010.02.02210.1016/j.renene.2010.02.022Suche in Google Scholar

[23] Pathak, A., Dastidar, M. G., & Sreekrishnan, T. R. (2009a). Bioleaching of heavy metals from sewage sludge: A review. Journal of Environmental Management, 90, 2343–2353. DOI: 10.1016/j.jenvman.2008.11.005. http://dx.doi.org/10.1016/j.jenvman.2008.11.00510.1016/j.jenvman.2008.11.005Suche in Google Scholar PubMed

[24] Pathak, A., Dastidar, M. G., & Sreekrishnan, T. R. (2009b). Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: A comparative study. Journal of Hazardous Materials, 171, 273–278. DOI: 10.1016/j.jhazmat.2009.05.139. http://dx.doi.org/10.1016/j.jhazmat.2009.05.13910.1016/j.jhazmat.2009.05.139Suche in Google Scholar PubMed

[25] Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., Davidson, C. M., Gomez, A., Lück, D., Bacon, J., Yli-Halla, M., Muntau, H., & Quevauviller, P. (2000). Application of a modified BCR sequential extracion (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233. DOI: 10.1039/b001496f. http://dx.doi.org/10.1039/b001496f10.1039/b001496fSuche in Google Scholar PubMed

[26] Rubio-Loza, L. A., & Noyola, A. (2010). Two-phase (acidogenic-methanogenic) anaerobic thermophilic/mesophilic digestion system for producing Class A biosolids from municipal sludge. Bioresource Technology, 101, 576–585. DOI: 10.1016/j.biortech.2009.08.066. http://dx.doi.org/10.1016/j.biortech.2009.08.06610.1016/j.biortech.2009.08.066Suche in Google Scholar PubMed

[27] da Silva, A. L. O., Barrocas, P. R. G., Jacob, S. C., & Moreira, J. C. (2005). Dietary intake and health effects of selected toxic elements. Brazilian Journal of Plant Physiology, 17, 79–93. DOI: 10.1590/s1677-04202005000100007. 10.1590/S1677-04202005000100007Suche in Google Scholar

[28] Song, Y. C., Kwon, S. J., & Woo, J. H. (2004). Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Research, 38, 1653–1662. DOI: 10.1016/j.watres.2003.12.019. http://dx.doi.org/10.1016/j.watres.2003.12.01910.1016/j.watres.2003.12.019Suche in Google Scholar PubMed

[29] Stylianou, M. A., Kollia, D., Haralambous, K. J., Inglezakis, V. J., Moustakas, K. G., & Loizidou, M. D. (2007). Effect of acid treatment on the removal of heavy metals from sewage sludge. Desalination, 215, 73–81. DOI: 10.1016/j.desal.2006.11.015. http://dx.doi.org/10.1016/j.desal.2006.11.01510.1016/j.desal.2006.11.015Suche in Google Scholar

[30] Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851. DOI: 10.1021/ac50043a017. http://dx.doi.org/10.1021/ac50043a01710.1021/ac50043a017Suche in Google Scholar

[31] Walter, I., MartÍnez, F., & Cala, V. (2006). Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environmental Pollution, 139, 507–514. DOI: 10.1016/j.envpol.2005.05.020. http://dx.doi.org/10.1016/j.envpol.2005.05.02010.1016/j.envpol.2005.05.020Suche in Google Scholar PubMed

[32] Werle, S., & Wilk, R. K. (2010). A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renewable Energy, 35, 1914–1919. DOI: 10.1016/j.renene.2010.01.019. http://dx.doi.org/10.1016/j.renene.2010.01.01910.1016/j.renene.2010.01.019Suche in Google Scholar

[33] Yuan, X., Huang, H., Zeng, G., Li, H., Wang, J., Zhou, C., Zhu, H., Pei, X., Liu, Z., & Liu, Z. (2011). Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresource Technology, 102, 4104–4110. DOI: 10.1016/j.biortech.2010.12.055. http://dx.doi.org/10.1016/j.biortech.2010.12.05510.1016/j.biortech.2010.12.055Suche in Google Scholar PubMed

Published Online: 2012-4-11
Published in Print: 2012-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0128-9/html
Button zum nach oben scrollen