Startseite Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties

  • Yingying Zhang EMAIL logo , Yannan Xue und Min Yu
Veröffentlicht/Copyright: 30. Dezember 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Non-aggregated spherical polystyrene (PS) particles were coated with GdPO4:Tb3+/Ce3+ phosphor layers by a conventional hydrothermal synthesis using poly(vinylpyrrolidone) (PVP) as an additive without further annealing treatment. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), as well as luminescence decay experiments were used to characterise the resulting core-shell structured PS@GdPO4:Tb3+/Ce3+ samples. The results of XRD indicated that the PS particles were successfully coated with the GdPO4:Tb3+/Ce3+ phosphor layers, which could be further verified by the images of FESEM. Under ultraviolet excitation, the PS@GdPO4:Tb3+/Ce3+ phosphors show Tb3+ characteristic emission, i.e. 5D4-7FJ (J = {6, 5, 4, 3}) emission lines with green emission 5D4-7F5 (543 nm) as the most prominent group. The core-shell phosphors so obtained have potential applications in field emission display (FED) and plasma display panels (PDP).

[1] Adachi, G.-y., & Imanaka, N. (1998). The binary rare earth oxides. Chemical Reviews, 98, 1479–1514. DOI: 10.1021/cr940055h. http://dx.doi.org/10.1021/cr940055h10.1021/cr940055hSuche in Google Scholar

[2] Caruso, F. (2001). Nanoengineering of particle surfaces. Advanced Materials, 13, 11–22. DOI: 10.1002/1521-4095(200101) 13:1〈11::AID-ADMA11〉3.0.CO;2-N. http://dx.doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-NSuche in Google Scholar

[3] Caruso, R. A., & Antonietti, M. (2001). Sol-gel nanocoating: An approach to the preparation of structured materials. Chemistry of Materials, 13, 3272–3282. DOI: 10.1021/cm001257z. http://dx.doi.org/10.1021/cm001257z10.1021/cm001257zSuche in Google Scholar

[4] Chang, K.-W., & Wu, J.-J. (2005). Formation of β-Ga2O3-TiO2 “nanobarcodes” from core-shell nanowires. Advanced Materials, 17, 241–245. DOI: 10.1002/adma.200400708. http://dx.doi.org/10.1002/adma.20040070810.1002/adma.200400708Suche in Google Scholar

[5] Di, W., Wang, X., Chen, B., Lai, H., & Zhao, X. (2005a). Preparation, characterization and VUV luminescence property of YPO4:Tb phosphor for a PDP. Optical Materials, 27, 1386–1390. DOI: 10.1016/j.optmat.2004.10.001. http://dx.doi.org/10.1016/j.optmat.2004.10.00110.1016/j.optmat.2004.10.001Suche in Google Scholar

[6] Di, W., Wang, X., Chen, B., & Zhao, X. (2005b). A new sol-gel route to synthesize YPO4:Tb as a green-emitting phosphor for the plasma display panels. Chemistry Letters, 34, 566–567. DOI: 10.1246/cl.2005.566. http://dx.doi.org/10.1246/cl.2005.56610.1246/cl.2005.566Suche in Google Scholar

[7] Dokoutchaev, A., James, J. T., Koene, S. C., Pathak, S., Prakash, G. K. S., & Thompson, M. E. (1999). Colloidal metal deposition onto functionalized polystyrene microspheres. Chemistry of Materials, 11, 2389–2399. DOI: 10.1021/cm9900352. http://dx.doi.org/10.1021/cm990035210.1021/cm9900352Suche in Google Scholar

[8] Hachani, S., Moine, B., El-akrmi, A., & Ferid, M. (2009). Luminescent properties of some ortho- and pentaphosphates doped with Gd3+-Eu3+: Potential phosphors for vacuum ultraviolet excitation. Optical Materials, 31, 678–684. DOI: 10.1016/j.optmat.2008.07.011. http://dx.doi.org/10.1016/j.optmat.2008.07.01110.1016/j.optmat.2008.07.011Suche in Google Scholar

[9] Hall, S. R., Davis, S. A., & Mann, S. (2000). Cocondensation of organosilica hybrid shells on nanoparticle templates: A direct synthetic route to functionalized core-shell colloids. Langmuir, 16, 1454–1456. DOI: 10.1021/la9909143. http://dx.doi.org/10.1021/la990914310.1021/la9909143Suche in Google Scholar

[10] Hoppe, C. E., Lazzari, M., Pardiñas-Blanco, I., & Lopéz-Quintela, M. A. (2006). One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir, 22, 7027–7034. DOI: 10.1021/la060885d. http://dx.doi.org/10.1021/la060885d10.1021/la060885dSuche in Google Scholar

[11] Lehmann, O., Meyssamy, H., Kömpe, K., Schnablegger, H., & Haase, M. (2003). Synthesis, growth, and Er3+ luminescence of lanthanide phosphate nanoparticles. Journal of Physical Chemistry B, 107, 7449–7453. DOI: 10.1021/jp030012h. http://dx.doi.org/10.1021/jp030012h10.1021/jp030012hSuche in Google Scholar

[12] Li, L., Li, G., Wang, D., Tao, Y., & Zhang, X. (2006). Energy transfer mechanism of GdPO4:RE3+ (RE = Tb, Tm) under VUV-UV excitation. Science in China Series E: Technological Sciences, 49, 408–413. DOI: 10.1007/s11431-006-2001-6. http://dx.doi.org/10.1007/s11431-006-2001-610.1007/s11431-006-2001-6Suche in Google Scholar

[13] Liu, G., & Hong, G. (2005). Synthesis of SiO2/Y2O3:Eu coreshell materials and hollow spheres. Journal of Solid State Chemistry, 178, 1647–1651. DOI: 10.1016/j.jssc.2005.03.010. http://dx.doi.org/10.1016/j.jssc.2005.03.01010.1016/j.jssc.2005.03.010Suche in Google Scholar

[14] Liu, S. H., & Han, M. Y. (2005). Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: Robust bioprobes. Advanced Functional Materials, 15, 961–967. DOI: 10.1002/adfm.200400427. http://dx.doi.org/10.1002/adfm.20040042710.1002/adfm.200400427Suche in Google Scholar

[15] Lu, Y., Yin, Y., Li, Z.-Y., & Xia, Y. (2002). Synthesis and self-assembly of Au@SiO2 core-shell colloids. Nano Letters, 2, 785–788. DOI: 10.1021/nl025598i. http://dx.doi.org/10.1021/nl025598i10.1021/nl025598iSuche in Google Scholar

[16] Nishikawa, S., & Matijević, E. (1994). Preparation of monodispersed spherical silica-alumina particles by hydrolysis of mixed alkoxides. Journal of Colloid and Interface Science, 165, 141–147. DOI: 10.1006/jcis.1994.1214. http://dx.doi.org/10.1006/jcis.1994.121410.1006/jcis.1994.1214Suche in Google Scholar

[17] Ocana, M., & Gonzalez-Elipe, A. R. (1999). Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 157, 315–324. DOI: 10.1016/S0927-7757(99)00088-6. http://dx.doi.org/10.1016/S0927-7757(99)00088-610.1016/S0927-7757(99)00088-6Suche in Google Scholar

[18] Oldenberg, S. J., Averitt, R. D., Westcott, S. L., & Halas, N. J. (1998). Nanoengineering of optical resonances. Chemical Physics Letters, 288, 243–247. DOI: 10.1016/S0009-2614(98)00277-2. http://dx.doi.org/10.1016/S0009-2614(98)00277-210.1016/S0009-2614(98)00277-2Suche in Google Scholar

[19] Paine, A. J., Luymes, W., & McNulty, J. (1990). Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions. Macromolecules, 23, 3104–3109. DOI: 10.1021/ma00214a012. http://dx.doi.org/10.1021/ma00214a01210.1021/ma00214a012Suche in Google Scholar

[20] Peng, Z., Jiang, Y., Song, Y., Wang, C., & Zhang, H. (2008). Morphology control of nanoscale PbS particles in a polyol process. Chemistry of Materials, 20, 3153–3162. DOI: 10.1021/cm703707v. http://dx.doi.org/10.1021/cm703707v10.1021/cm703707vSuche in Google Scholar

[21] Rambabu, U., Munirathnam, N. R., Prakash, T. L., & Buddhudu, S. (2002). Emission spectra of LnPO4:RE3+ (Ln=La, Gd; RE=Eu, Tb and Ce) powder phosphors. Materials Chemistry and Physics, 78, 160–169. DOI: 10.1016/S0254-0584(02)00294-8. http://dx.doi.org/10.1016/S0254-0584(02)00294-810.1016/S0254-0584(02)00294-8Suche in Google Scholar

[22] Rao, R. P. (2005). Tm3+ activated lanthanum phosphate: a blue PDP phosphor. Journal of Luminescence, 113, 271–278. DOI: 10.1016/j.jlumin.2004.10.018. http://dx.doi.org/10.1016/j.jlumin.2004.10.01810.1016/j.jlumin.2004.10.018Suche in Google Scholar

[23] Rao, R. P. (2003). Tb3+ activated green phosphors for plasma display panel applications. Journal of the Eletrochemical Society, 150, H165–H171. DOI: 10.1149/1.1583718. http://dx.doi.org/10.1149/1.158371810.1149/1.1583718Suche in Google Scholar

[24] Salgueiriño-Maceira, V., Spasova, M., & Farle, M. (2005). Water-stable, magnetic silica-cobalt/cobalt oxide-silica multishell submicrometer spheres. Advanced Functional Materials, 15, 1036–1040. DOI: 10.1002/adfm.200400469. http://dx.doi.org/10.1002/adfm.20040046910.1002/adfm.200400469Suche in Google Scholar

[25] Schärtl, W. (2000). Crosslinked spherical nanoparticles with core-shell topology. Advanced Materials, 12, 1899–1908. DOI: 10.1002/1521-4095(200012)12:24〈1899::AID-ADMA1 899〉3.0.CO;2-T. http://dx.doi.org/10.1002/1521-4095(200012)12:24<1899::AID-ADMA1899>3.0.CO;2-T10.1002/1521-4095(200012)12:24<1899::AID-ADMA1899>3.0.CO;2-TSuche in Google Scholar

[26] Schuetz, P., & Caruso, F. (2002). Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chemistry of Materials, 14, 4509–4516. DOI: 10.1021/cm0212257. http://dx.doi.org/10.1021/cm021225710.1021/cm0212257Suche in Google Scholar

[27] Suryanarayanan, V., Nair, A. S., Tom, R. T., & Pradeep, T. (2004). Porosity of core-shell nanoparticles. Journal of Materials Chemistry, 14, 2661–2666. DOI: 10.1039/b404408h. http://dx.doi.org/10.1039/b404408h10.1039/B404408HSuche in Google Scholar

[28] Tian, Z., Liang, H., Lin, H., Su, Q., Guo, B., Zhang, G., & Fu, Y. (2006). Luminescence of NaGdFPO4:Ln3+ after VUV excitation: A comparison with GdPO4:Ln3+ (Ln=Ce, Tb). Journal of Solid State Chemistry, 179, 1356–1362. DOI: 10.1016/j.jssc.2006.01.044. http://dx.doi.org/10.1016/j.jssc.2006.01.04410.1016/j.jssc.2006.01.044Suche in Google Scholar

[29] ul Haq, I., Matijević, E., & Akhtar, K. (1997). Preparation and properties of uniform coated inorganic colloidal particles. 11. Nickel and its compounds on manganese compounds. Chemistry of Materials, 9, 2659–2665. DOI: 10.1021/cm970230l. http://dx.doi.org/10.1021/cm970230l10.1021/cm970230lSuche in Google Scholar

[30] Wang, D., & Kodama, N. (2009). Visible quantum cutting through downconversion in GdPO4:Tb3+ and Sr3Gd(PO4)3: Tb3+. Journal of Solid State Chemistry, 182, 2219–2224. DOI: 10.1016/j.jssc.2009.05.026. http://dx.doi.org/10.1016/j.jssc.2009.05.02610.1016/j.jssc.2009.05.026Suche in Google Scholar

[31] Wang, H., Yu, M., Lin, C. K., & Lin, J. (2006). Core-shell structured SiO2@YVO4:Dy3+/Sm3+ phosphor particles: Sol-gel preparation and characterization. Journal of Colloid and Interface Science, 300, 176–182. DOI: 10.1016/j.jcis.2006.03.052. http://dx.doi.org/10.1016/j.jcis.2006.03.05210.1016/j.jcis.2006.03.052Suche in Google Scholar

[32] Wang, Y., Wu, C., & Wei, J. (2007). Hydrothermal synthesis and luminescent properties of LnPO4:Tb,Bi (Ln=La,Gd) phosphors under UV/VUV excitation. Journal of Luminescence, 126, 503–507. DOI: 10.1016/j.jlumin.2006.09.006. http://dx.doi.org/10.1016/j.jlumin.2006.09.00610.1016/j.jlumin.2006.09.006Suche in Google Scholar

[33] Wiley, B., Sun, Y., Mayers, B., & Xia, Y. (2005). Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry — A European Journal, 11, 454–463. DOI: 10.1002/chem.200400927. http://dx.doi.org/10.1002/chem.20040092710.1002/chem.200400927Suche in Google Scholar

[34] Wu, C., Wang, Y., & Jie, W. (2007). Hydrothermal synthesis and luminescent properties of LnPO4:Tb (Ln = La, Gd) phosphors under VUV excitation. Journal of Alloys and Compounds, 436, 383–386. DOI: 10.1016/j.jallcom.2006.07.056. http://dx.doi.org/10.1016/j.jallcom.2006.07.05610.1016/j.jallcom.2006.07.056Suche in Google Scholar

[35] Wu, X., You, H., Cui, H., Zeng, X., Hong, G., Kim, C.-H., Pyun, C.-H., Yu, B.-Y., & Park, C.-H. (2002). Vacuum ultraviolet optical properties of (La,Gd)PO4:RE3+ (RE=Eu, Tb). Materials Research Bulletin, 37, 1531–1538. DOI: 10.1016/S0025-5408(02)00860-7. http://dx.doi.org/10.1016/S0025-5408(02)00975-310.1016/S0025-5408(02)00860-7Suche in Google Scholar

[36] Xiong, Y., Washio, I., Chen, J., Cai, H., Li, Z.-Y., & Xia, Y. (2006). Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 22, 8563–8570. DOI: 10.1021/la061323x. http://dx.doi.org/10.1021/la061323x10.1021/la061323xSuche in Google Scholar PubMed

[37] Yaiphaba, N., Ningthoujam, R. S., Singh, S. N., Vatsa, R. K., & Singh, R. N. (2010). Probing of inversion symmetry site in Eu3+-doped GdPO4 by luminescence study: Concentration and annealing effect. Journal of Luminescence, 130, 174–180. DOI: 10.1016/j.jlumin.2009.08.008. http://dx.doi.org/10.1016/j.jlumin.2009.08.00810.1016/j.jlumin.2009.08.008Suche in Google Scholar

[38] Yang, Y., Chu, Y., Yang, F., & Zhang, Y. (2005). Uniform hollow conductive polymer microspheres synthesized with the sulfonated polystyrene template. Materials Chemistry and Physics, 92, 164–171. DOI: 10.1016/j.matchemphys.2005.01.007. http://dx.doi.org/10.1016/j.matchemphys.2005.01.00710.1016/j.matchemphys.2005.01.007Suche in Google Scholar

[39] Yang, Y., Chu, Y., Zhang, Y., Yang, F., & Liu, J. (2006). Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates. Journal of Solid State Chemistry, 179, 470–475. DOI: 10.1016/j.jssc.2005.10.011. http://dx.doi.org/10.1016/j.jssc.2005.10.01110.1016/j.jssc.2005.10.011Suche in Google Scholar

[40] Yu, L., Li, D., & Yue, M. (2007). Fabrication and characterization of the photoluminescent properties of Tb3+ doped onedimensional GdPO4 nanorods. Materials Letters, 61, 4374–4376. DOI: 10.1016/j.matlet.2007.02.005. http://dx.doi.org/10.1016/j.matlet.2007.02.00510.1016/j.matlet.2007.02.005Suche in Google Scholar

[41] Yu, L., Li, D., Yue, M., Yao, J., & Lu, S. (2006a). Dependence of morphology and photoluminescent properties of GdPO4:Eu3+ nanostructures on synthesis condition. Chemical Physics, 326, 478–482. DOI: 10.1016/j.chemphys.2006.03.008. http://dx.doi.org/10.1016/j.chemphys.2006.03.00810.1016/j.chemphys.2006.03.008Suche in Google Scholar

[42] Yu, M., Lin, J., & Fang, J. (2005). Silica spheres coated with YVO4:Eu3+ layers via sol-gel process: A simple method to obtain spherical core-shell phosphors. Chemistry of Materials, 17, 1783–1791. DOI: 10.1021/cm0479537. http://dx.doi.org/10.1021/cm047953710.1021/cm0479537Suche in Google Scholar

[43] Yu, M., Wang, H., Lin, C. K., Li, G. Z., & Lin, J. (2006b). Sol-gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core-shell structure. Nanotechnology, 17, 3245–3252. DOI: 10.1088/0957-4484/17/13/028. http://dx.doi.org/10.1088/0957-4484/17/13/02810.1088/0957-4484/17/13/028Suche in Google Scholar

[44] Zhang, Y., Chu, Y., Yang, Y., Dong, L., Yang, F., & Liu, J. (2007). Fabrication of polystyrene-PbS core-shell and hollow PbS microspheres with sulfonated polystyrene templates. Colloid & Polymer Science, 285, 1061–1066. DOI: 10.1007/s00396-007-1664-2. http://dx.doi.org/10.1007/s00396-007-1664-210.1007/s00396-007-1664-2Suche in Google Scholar

Published Online: 2010-12-30
Published in Print: 2011-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0088-5/html
Button zum nach oben scrollen