Startseite Comparative study of CTAB adsorption on bituminous coal and clay mineral
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comparative study of CTAB adsorption on bituminous coal and clay mineral

  • Roman Maršálek EMAIL logo und Zuzana Navrátilová
Veröffentlicht/Copyright: 30. Dezember 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Adsorption of cetyltrimethylammonium bromide (CTAB) onto bituminous coal (BC) and a clay mineral, montmorillonite (MMT), was studied. Simultaneous measurements of the CTAB adsorption and zeta potential determination of the adsorption suspensions were carried out. The adsorption isotherms were found to be of the typical Langmuir type; values of the CTAB adsorption capacities were calculated (a m = 0.65 mmol g−1 for coal and a m = 3.24 mmol g−1 for MMT). The shape of the adsorption isotherms was correlated with zeta potential values at the adsorption equilibrium. The adsorption properties of both sorbents were studied by voltammetry on carbon paste electrodes (CPE) modified with coal-CTAB and MMT-CTAB system, respectively. Open circuit sorption with differential pulse voltammetry was performed in order to compare the sorption properties of the systems with the unmodified sorbents. The Cu2+ adsorption on BC and MMT decreased to approximately 50 % and 40 %, respectively. The surface adsorption mechanism of CTAB on coal based on hydrophilic interactions was proposed. In the case of montmorillonite, the CTAB intercalation is expected via ion exchange into the inter-layer space forming a double- or triple-layer arrangement.

[1] Başar, C. A., Karagunduz, A., Keskinler, B., & Cakici, A. (2003). Effect of presence of ions on surface characteristics of surfactant modified powdered activated carbon (PAC). Applied Surface Science, 218, 169–174. DOI: 10.1016/S0169-4332(03)00576-2. 10.1016/S0169-4332(03)00576-2Suche in Google Scholar

[2] Betega de Paiva, L., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 8–24. DOI: 10.1016/j.clay.2008.02.006. http://dx.doi.org/10.1016/j.clay.2008.02.00610.1016/j.clay.2008.02.006Suche in Google Scholar

[3] Crawford, R. J., & Mainwaring, D. E. (2001). The influence of surfactant adsorption on the surface characterisation of Australian coals. Fuel, 80, 313–320. DOI: 10.1016/S0016-2361(00)00110-1. http://dx.doi.org/10.1016/S0016-2361(00)00110-110.1016/S0016-2361(00)00110-1Suche in Google Scholar

[4] Gallardo-Moreno, A. M., González-García, C. M., González-Martín, M. L., & Bruque, J. M. (2004). Arrangement of SDS adsorbed layer on carbonaceous particles by zeta potential determinations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 249, 57–62. DOI: 10.1016/j.colsurfa.2004.08.051. http://dx.doi.org/10.1016/j.colsurfa.2004.08.05110.1016/j.colsurfa.2004.08.051Suche in Google Scholar

[5] Gu, T., Zhu, B. Y., & Rupprecht, H. (1992). Surfactant adsorption and surface micellizations. Progress in Colloid and Polymer Science, 88, 74–85. DOI: 10.1007/BFb0114420. http://dx.doi.org/10.1007/BFb011442010.1007/BFb0114420Suche in Google Scholar

[6] Hernández, M., Fernández, L., Borrás, C., Mostany, J., & Carrero, H. (2007). Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: Oxidation of phenol. Analytica Chimica Acta, 597, 245–256. DOI: 10.1016/j.aca.2007.06.010. http://dx.doi.org/10.1016/j.aca.2007.06.01010.1016/j.aca.2007.06.010Suche in Google Scholar PubMed

[7] Juang, R.-S., & Wu, W.-L. (2002). Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials. Journal of Colloid and Interface Science, 249, 22–29. DOI: 10.1006/jcis.2002.8240. http://dx.doi.org/10.1006/jcis.2002.824010.1006/jcis.2002.8240Suche in Google Scholar PubMed

[8] Kooli, F., Liu, Y., Alshahateet, S. F., Messali, M., & Bergaya, F. (2009). Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Applied Clay Science, 43, 357–363. DOI: 10.1016/j.clay.2008.10.006. http://dx.doi.org/10.1016/j.clay.2008.10.00610.1016/j.clay.2008.10.006Suche in Google Scholar

[9] Liu, X. Lu, R., Wang, R. C., Zhou, H., & Xu, S. (2007). Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water: A molecular dynamics study. Clays and Clay Minerals, 55, 554–564. DOI: 10.1346/CCMN.2007.0550602. http://dx.doi.org/10.1346/CCMN.2007.055060210.1346/CCMN.2007.0550602Suche in Google Scholar

[10] Maršálek, R., & Taraba, B. (2008). Adsorption of the SDS on coal. Progress in Colloid and Polymer Science, 135, 163–168. DOI: 10.1007/978-3-540-85134-9. 10.1007/978-3-540-85134-9Suche in Google Scholar

[11] Mishra, S. K., Kanungo, S. B., & Rajeev (2003). Adsorption of sodium dodecyl benzenesulfonate onto coal. Journal of Colloid and Interface Science, 267, 42–48. DOI: 10.1016/S0021-9797(03)00553-8. http://dx.doi.org/10.1016/S0021-9797(03)00553-810.1016/S0021-9797(03)00553-8Suche in Google Scholar

[12] Navrátilová, Z. (2009). Coal as a new carbon paste electrode modifier with sorption properties. Electroanalysis, 21, 1758–1762. DOI: 10.1002/elan.200904657. http://dx.doi.org/10.1002/elan.20090465710.1002/elan.200904657Suche in Google Scholar

[13] Navrátilová, Z., & Kula, P. (2000). Cation and anion exchange on clay modified electrodes. Journal of Solid State Electrochemistry, 4, 342–347. DOI: 10.1007/s100080000126. http://dx.doi.org/10.1007/s10008000012610.1007/s100080000126Suche in Google Scholar

[14] Navrátilová, Z., & Vaculíková, L. (2006). Electrodeposition of mercury film on electrodes modified with clay minerals. Chemical Papers, 60, 348–352. DOI: 10.2478/s11696-006-0063-3. http://dx.doi.org/10.2478/s11696-006-0063-310.2478/s11696-006-0063-3Suche in Google Scholar

[15] Navrátilová, Z., Wojtowicz, P., Vaculíková, L., & Šugárková, V. (2007). Sorption of alkylammonium cations on montmorillonite. Acta Geodynamica et Geomaterialia, 4(3), 59–65. Suche in Google Scholar

[16] Ngameni, E., Tonlé, I. K., Apohkeng, J. T., Bouwé, R. G. B., Jieumboué, A. T, & Walcarius, A. (2006). Permselective and preconcentration properties of a surfactant-intercalated clay modified electrode. Electroanalysis, 18, 2243–2250. DOI: 10.1002/elan.200603654. http://dx.doi.org/10.1002/elan.20060365410.1002/elan.200603654Suche in Google Scholar

[17] Praus, P., Turicova, M., Študentova, S., & Ritz, M. (2006). Study of cetyltrimethylammonium and cetylpyridinium adsorption on montinorillonite. Journal of Colloid and Interface Science, 304, 29–36. DOI: 10.1016/j.jcis.2006.08.038. http://dx.doi.org/10.1016/j.jcis.2006.08.03810.1016/j.jcis.2006.08.038Suche in Google Scholar

[18] Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28, 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002. http://dx.doi.org/10.1016/j.progpolymsci.2003.08.00210.1016/j.progpolymsci.2003.08.002Suche in Google Scholar

[19] Rosen, M. J. (2004). Surfactants and interfacial phenomena (3rd ed.). Hoboken, NJ, USA: Wiley. DOI: 10.1002/0471670561. http://dx.doi.org/10.1002/047167056110.1002/0471670561Suche in Google Scholar

[20] Singh, B. P. (1999). The role of surfactant adsorption in the improved dewatering of fine coal. Fuel, 78, 501–506. DOI: 10.1016/S0016-2361(98)00169-0. http://dx.doi.org/10.1016/S0016-2361(98)00169-010.1016/S0016-2361(98)00169-0Suche in Google Scholar

[21] Taraba, B., Kula, P., & Gucka, M. (2001). Calorimetric study of interaction between surfactants and coals. In Proceedings of the International Slovak and Czech Calorimetric Seminar, 28 May–1 June 2001 (pp 49–50). Račkova dolina, Slovakia. Suche in Google Scholar

[22] Vittal, R., Gomathi, H., & Kim, K.-J. (2006). Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Advances in Colloid and Interface Science, 119, 55–68. DOI: 10.1016/j.cis.2005.09.004. http://dx.doi.org/10.1016/j.cis.2005.09.00410.1016/j.cis.2005.09.004Suche in Google Scholar PubMed

[23] Wu, H. S., & Pendleton, P. (2001). Adsorption of anionic surfactant by activated carbon: Effect of surface chemistry, ionic strength, and hydrophobicity. Journal of Colloid and Interface Science, 243, 306–315. DOI: 10.1006/jcis.2001.7905. http://dx.doi.org/10.1006/jcis.2001.790510.1006/jcis.2001.7905Suche in Google Scholar

[24] Wu, S. F., Yanagisawa, K., & Nishizawa, T. (2001). ζ-potential on carbons and carbides. Carbon, 39, 1537–1541. DOI: 10.1016/S0008-6223(00)00275-X. http://dx.doi.org/10.1016/S0008-6223(00)00275-X10.1016/S0008-6223(00)00275-XSuche in Google Scholar

Published Online: 2010-12-30
Published in Print: 2011-2-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0076-9/html
Button zum nach oben scrollen